Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-25T02:10:40.439Z Has data issue: false hasContentIssue false

Thermal Effects of Phase Transformations: A General Approach

Published online by Cambridge University Press:  26 February 2011

Alex Umantsev*
Affiliation:
[email protected], Fayetteville State University, Natural Sciences, 1200 Murchison Rd., Fayetteville, NC, 28301, United States, 910-672-1449, 910-672-1159
Get access

Abstract

All stages of phase transformations in materials, nucleation, growth, and coarsening, are subjected to thermal effects that stem from the redistribution of energy in the system like, release of latent heat and heat conduction. The thermal effects change the rate and outcome of the transformation and may result in appearance of unusual states or phases, in particular in nanosystems. This paper is not a complete account of the theory of thermal effects; it is rather a guide through many seemingly unrelated effects in different phase transformations, which in fact have unified origin. Although the dynamical Ginzburg-Landau approach will be used for the analysis of the effects, they are robust and independent of the employed theoretical methods. Another purpose of this review is to bring these effects to the attention of experimenters and motivate them on conducting new experiments in the area of phase transitions.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Landau, L.D., Phys. Zs. Sowjet., 11, 26, 545; 12, 123 (1937) ); see also Collected Papers of L.D. Landau, edited by D. Ter-Haar (Cordon and Breach, London, 1967) pp. 193, 209, 236; V.L. Ginzburg and L.D. Landau, Zh. Exep. Teor. Fiz. 20, 1064 (1950).Google Scholar
2. Cahn, J.W. and Hilliard, J.E., J. Chem. Phys., 28, 258 (1958).Google Scholar
3. Gibbs, J.W., The Scientific Papers, (Dover, New York, 1961) Vol. 1, p. 229; L.D. Landay, E.M. Lifshitz, Statistical Physics, 3rded., (Pergamon Press, Oxford, 1980).Google Scholar
4. Umantsev, A., Phys. Rev. B 64 (2001), 075419.Google Scholar
5. Umantsev, A., J. Chem. Phys. 116, 4252 (2002).Google Scholar
6. Umantsev, A.R. and Roytburd, A.L., Soviet Physics, Solid State, 30, 651 (1988).Google Scholar
7. Fife, P.C. and Gill, G.S., Physica D 35, 267 (1989); PRA 43, 843 (1991).Google Scholar
8. Umantsev, A. and Olson, G. B., Phys. Rev. A 46 R6132, (1992); Phys. Rev. E 48, 4229 (1993).Google Scholar
9. Metiu, H., Kitahara, K., Ross, J., J. Chem. Phys. 65, 393(1976); S.-K.Chan, ibid 67, 5755 (1977)Google Scholar
10. Allen, S. M. and Cahn, J.W., Acta Matall, 27, 1085 (1979).Google Scholar
11. Umantsev, A., Acta Mater. 46, 4935 (1998).Google Scholar
12. Lifshitz, I.M., Sov. Phys. JETP 15, 939 (1962).Google Scholar
13. Gonzalez, E.J. et al. , J. Mater. Res. 15, 764 (2000); A. Salazar, et al Analytical Sciences, 17, s95 (2001); R. L. Voti, et al J. Optoel. Adv. Mat. 3, 779 (2001).Google Scholar
14. Umantsev, A., J. Chem. Phys. 96, 605 (1992).Google Scholar
15. A.Z. Patashinsky and M. V. Chertkov, Fiz. Tverd. Tela (Leningrad) 32, 509 (1990) [Sov. Phys. Solid State 32, 295 (1990)]; Schofield, S. A. and Oxtoby, D. W., J. of Chem. Phys. 94, 2176 (1991); S.-C. Ngan and L. Truskinovsky, Mech. Phys. Solid. 47, 141 (1999); A. Vainchtein Cont. Mech. Therm. 15, 1, 2003.Google Scholar
16. Umantsev, A. and Davis, S.H., Phys. Rev. A 45, 7195 (1992).Google Scholar
17. Wolkind, D.J. in “Preparation and Properties of Solid State Materials”, Vol.4, ed. By Wilcox, W.R. (Dekker, N.Y., 1979), p.111; W.A. Tiller, “The Science of Crystallization. Microscopic Interfacial Phenomena”, (Cambridge Univ. Press, Cambridge 1991), pp. 68, 99.Google Scholar
18. Seitz, F., “The modern theory of solids”, (McGraw-Hill, N.Y., 1940), p. 480.Google Scholar
19. Umantsev, A., J. Chem. Phys. 107, 1600 (1997).Google Scholar
20. Suzuky, T., Toyoda, S., Umeda, T., and Kimura, Y., J. Crystal Growth, 38, 123128 (1977); R. Willnecker, D.M. Herlach, B. Feuerbacher, Phys. Rev. Lett. 62, 2707 (1989); M.E. Glicksman and R.J. Schaefer, J. Crystal Growth, 1, 297–310 (1967); L. A. Tarshis and G.R. Kotler, J. Crystal Growth, 2, 222–226 (1968); M.E. Glicksman, R.J. Schaefer, and J.D. Ayers, Met. Trans. A 7A, 1747 (1976); J.P. Franck and J. Jung, J. Low Temp. Phys. 64, 165 (1986); G.H. Rodway, J.D. Hunt, J. Cryst. Growth 112 (1991) 554; MD simulations on pure aluminum using Mendelev-Srolovitz interatomic potential. To be published.Google Scholar