Article contents
Thermal Annealing Behavior of Si-DLC Ibad Coatings
Published online by Cambridge University Press: 03 September 2012
Abstract
Amorphous, 700 nm thick, diamond-like carbon coatings containing silicon (Si-DLC), farmed by Ar+ ion beam assisted deposition (IBAD) on silicon substrates, were annealed in air at temperatures ranging from room temperature to 600°C for 30 minutes. RBS analysis showed that the composition of the films remained the same up to 200°C, but at higher temperatures the Si-DLC coatings began to oxidize at the outer surface of the coating, forming a surface layer of SiO2. After in-air annealing at 600°C the coating had been completely converted to SiO2, with no trace of carbon seen by RBS. FTIR spectra of the unannealed coatings showed a very broad mode typical of Si-DLC bonding as well as some absorption features associated with Si and SiO2. Above 200°C the transmission mode shifted to higher frequencies which may be caused by the growth of SiO2 and the decrease of the Si-DLC film thickness. The room temperature ball-on-disk friction coefficient of the coating against a 1/2′′ diameter 440 C steel ball at 1 N load ranged from 0.2 for the original coating up to 0.5 after a 100° anneal and returned to 0.2 after annealing at 200–400°C and fell to 0.12 after a 500°C exposure. The average Knoop microhardness (uncorrected for substrate effects) was 10 GPa (1,000 KHN) for coatings annealed at temperatures as high as 400°C. All coatings up to 500 °C passed the qualitative “Scotch Tape” test.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1997
References
- 2
- Cited by