Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T07:54:22.421Z Has data issue: false hasContentIssue false

Thermal and Electrical Properties of Czochralski Grown GeSi Single Crystals

Published online by Cambridge University Press:  21 March 2011

Ichiro Yonenaga
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Takaya Akashi
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Takashi Goto
Affiliation:
Institute for Materials Research, Tohoku University, Sendai 980-8577, Japan
Get access

Abstract

Single crystals of Ge1−xSix alloys in the composition range 0 < x < 1 non-doped and doped with boron, gallium, and phosphorus as an impurity were grown by the Czochralski method. The measurements of the thermal conductivity (κ), electrical conductivity (σ), and Seebeck coefficient (α) of the grown crystals were performed in the temperature range 300 – 1000 K. The thermal conductivityκ shows a minimum (κ ∼ 3.5 W/K.m) around the Si content x = 0.5 - 0.7, which can be explained by the phonon scattering due to a distortion of the crystal lattice. The Seebeck coefficientα was 300 - 400 μV/K at 600°C in the impurity-doped GeSi alloys. An ∣α∣ vs ln (σ) plot of highly impurity-doped GeSi alloys obeys a linear relation. The slope of the straight line is 1.2 k/e, indicating the coorporation of the charged impurity into the alloy scattering mechanism.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Abeles, B., Phys. Rev. 131, 1906 (1963).Google Scholar
2. Dismukes, J. P., Ekstrom, L., Steigmeier, E. F., Kudman, I., and Beers, D. S., J. Appl. Phys. 35, 2899 (1964).Google Scholar
3. Abrikosov, A. V., Zemskov, V. S., Iordanishvili, E. K., Petrov, A. V., and Rozhdestvenskaya, V. V., Sov. Phys. –Semicon. 2, 1468 (1969).Google Scholar
4. Vining, C. B., J. Appl. Phys. 69, 331 (1991).Google Scholar
5. Slack, G. A. and Hussain, M. S., J. Appl. Phys. 70, 2694 (1991).Google Scholar
6. Yonenaga, I., Akashi, T., and Goto, T., J. Phys. Chem. Solids 62, 1313 (2001).Google Scholar
7. Akashi, T., Yonenaga, I., and Goto, T., Mater. Trans. 42, 1024 (2001).Google Scholar
8. Yonenaga, I., Matsui, A., Tozawa, S., Sumino, K., and Fukuda, T., J. Crystal Growth 154, 275 (1995).Google Scholar
9. Yonenaga, I., J. Mat. Sci.: Mat. Electron. 10, 329 (1999).Google Scholar
10. Yonenaga, I., J. Crystal Growth 226, 47 (2001).Google Scholar
11. Abrahams, M. S., Braunstein, R., and Rosi, F. D., J. Phys. Chem. Solids 10, 204 (1959).Google Scholar
12. Steigmeire, E. F. and Abels, B., Phys. Rev. 136, A1149 (1964).Google Scholar
13. Braunstein, R., Moore, A. R., and Herman, F., Phys. Rev. 109, 695 (1958).Google Scholar
14. Busch, G. and Vogt, O., Helv. Phys. Acta. 33, 437 (1960).Google Scholar
15. Yamashita, O. and Sadatomi, N., J. Appl. Phys. 88, 245 (2000).Google Scholar
16. Mchedlidze, T. R. and Yonenaga, I., Jpn. J. Appl. Phys. 35, 652 (1996).Google Scholar
17. Yonenaga, I., Goto, T., Li, J. and Nonaka, M., Proceedings on the 17th International Conference on Thermoelectrics, (1998), p. 402.Google Scholar