Hostname: page-component-f554764f5-nqxm9 Total loading time: 0 Render date: 2025-04-21T06:33:28.918Z Has data issue: false hasContentIssue false

Theory of Electron Field Emission From Diamond And Diamond-Ldxe Carbon

Published online by Cambridge University Press:  10 February 2011

J Robertson*
Affiliation:
Engineering Dept, Cambridge University, Cambridge CB2 1PZ, UK
Get access

Abstract

It is shown that the facile electron field emission from diamond and diamond-like carbon occurs because surface groups such as C-H can produce large changes in electron affinity, so that electric fields from the anode can be focused towards unhydrogenated surface areas of high affinity, the fields ending on negative charges in an underlying depletion layer. The resulting downwards band bending creates very large fields which cause Fowler-Nordheim emission, while not exceeding the material's breakdown field, which is the highest for any solid.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

REFERENCES

1. Himpsel, F J, Knapp, J S, VanVechten, J A, Eastman, D E, Phys Rev B 20 624 (1979)Google Scholar
2. van der Weide, J, Zhang, Z, Baumann, P K, Wensell, M G, Bernholc, J, Nemanich, R J, Phys Rev B 50 5803 (1994)Google Scholar
3. Pate, B B, Surface Sci 165 83 (1986)Google Scholar
4. Bandis, C., Pate, B B, Phys Rev B 52 12056 (1995)Google Scholar
5. Geis, M W, Efremov, N N, Woodhouse, J D, McAleese, M D, Marywka, M, Socker, D G, Hochedez, J F, IEEE Trans ED Let 12 456 (1991)Google Scholar
6. Wang, C, Garcia, A, Ingram, D, Lake, M, Kordesch, M E, Electron Lett 27 1459 (1991)Google Scholar
7. Xu, W S, Tzeng, Y, Latham, R V, J Phys D 26 1776 (1993)Google Scholar
8. Zhu, W, Kochanski, G P, Jin, S, Seibles, L, J Appl Phys 78 2707 (1995)Google Scholar
9. Pupeter, N, Goni, A, Habermann, T, Mahner, E, Muller, G, Piel, H, J Vac Sci Technol B 14 2056(1996)Google Scholar
10. Geis, M W, Twichell, J C, Macaulay, J, Okano, K, App Phys Lett 67 1328(1995)Google Scholar
11. Okano, K, Koizumi, S, Silva, S R P, Amaratunga, G A J, Nature 381 140 (1996)Google Scholar
12. Geis, M W, Twichell, J C, Lyszczarz, T M, J Vac Sci Technol B 14 2060 (1996)Google Scholar
13. Talin, A A, Pan, L S, McCarty, K F, Doerr, H J, Bunshah, R F, App1 Phys Lett 69 3842 (1996)Google Scholar
14. Zhu, W, presented at Diamond Films ‘97 (Edinburgh, UK)Google Scholar
15. Amaratunga, G A J, Suva, S R P, App Phys Lett 68 2529 (1996)Google Scholar
16. Talin, A A, Felter, T E, Friedmann, T A, Sullivan, J P, Siegal, M P, J Vac Sci Technol A 14 1719(1996)Google Scholar
17. Satyanarayana, B S, Hart, A, Milne, W I, Robertson, J, App Phys Lett 71 1430 (1997)Google Scholar
18. Groning, O, Kuttel, O M, Schaller, E, Groning, P, Schlapbach, L, App Phys Lett 69 476 (1996)Google Scholar
19. Chuang, F Y, Sun, C Y, Chen, T T, Lin, I N, App Phys Lett 69 3504 (1996)Google Scholar
20. Missert, N, Friedmann, T A, Sullivan, J P, Copeland, R G, App Phys Lett 70 1995 (1997)Google Scholar
21. Choi, W B, Liu, J, McClure, M T, Myers, A F, Zhimov, V V, Cuomo, J J, Hren, J J, J Vac Sci Technol B 14 2050 (1996)Google Scholar
22. Jaskie, J E, MRS Bulletin 21 (March 1996) p59 Google Scholar
23. Bandis, C, Pate, B B, App Phys Lett 69 366 (1996)Google Scholar
24. Groning, O, Kuttel, O, Groning, P, Schlapbach, L, App Phys Lett 71 2253 (1997)Google Scholar
25. Robertson, J, Phys Rev B 53 16302 (1996)Google Scholar
26. Robertson, J, Diamond Related Mats 5 797 (1996)Google Scholar
27. Zhang, Z, Wensell, M, Bernholc, J, Phys Rev B 51 5291 (1995)Google Scholar
28. Rutter, M J, Robertson, J, Phys Rev B (1997)Google Scholar
29. Monch, W, J Vac Sci Technol B 14 2985 (1996); Appi Surfece Sci 92 367 (1996); Europhys Letts 27 479 (1994)Google Scholar
30. Baumann, P K, Nemanich, R J, J Vac Sci Technol B 15 1236 (1997)Google Scholar
31. Ristein, J, Schafer, J, Ley, L, Diamond Related Mats 4 508 (1995)Google Scholar
32. Schafer, J, Ristein, J, Ley, L, J Vac Sci Technol A 15 408 (1997)Google Scholar
33. Robertson, J, Mat Res Soc Symp Proc 471 217 (1997)Google Scholar
34. Modinos, A, Surf Sci 42 205 (1974)Google Scholar
35. Modinos, A, “Field, Thermionic and Secondary Electron Emission Spectroscopy’ (Plenum, NY, 1984)Google Scholar
36. Huang, Z H, Cutler, P H, Miskovsky, N M, Sullivan, T E, App Phys Lett 65 2562 (1994); J Vac Sci Technol 13 522 (1995)Google Scholar
37. Lerner, P, Cutler, P H, Miskovsky, N M, J Vac Sci Technol B 15 337 (1997)Google Scholar
38. Stratton, R, Phys Rev 135 A794(1964)Google Scholar
39. Bayliss, K H, Latham, R V, Proc Roy Soc A 403 285 (1986)Google Scholar
40. Latham, R V, High Voltage Vacuum Insulation (Academic Press, London, 1995)Google Scholar
41. Shen, T C et al, Science 268 1590 (1995);Google Scholar
Abeln, G C et al, Chem Phys Lett 257 148 (1996)Google Scholar
42. Nebel, C E, Munz, J, Stutzmann, M, Zachai, R, Guttler, H, Phys Rev B 55 9780 (1997)Google Scholar
43. Davis, R F, J Vac Sci Technol A 1 829 (1993)Google Scholar