Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-03T03:12:40.897Z Has data issue: false hasContentIssue false

Theoretical Aspects of Laser-Induced Periodic Surface Structure Formation

Published online by Cambridge University Press:  21 February 2011

Michael Hutchinson
Affiliation:
Department of Chemistry, University of RochesterRochester, New York 14627
Ki-Tung Lee
Affiliation:
Department of Chemistry, University of RochesterRochester, New York 14627
William C. Murphy
Affiliation:
Department of Chemistry, University of RochesterRochester, New York 14627
A. C. Beri
Affiliation:
Department of Chemistry, University of RochesterRochester, New York 14627
Thomas F. George
Affiliation:
Department of Chemistry, University of RochesterRochester, New York 14627
Get access

Abstract

Laser-induced periodic pattern formation has been observed on a variety of substances. In particular, low-power lasers have been used to deposit a pattern on a metal surface. For a relatively smooth surface grating, this pattern can be explained in terms of a perturbative solution of Maxwell's equations. However, as the surface grating is enhanced by this initial deposition, the perturbative solution breaks down. An alternate non-perturbative solution of Maxwell's equations for such rough surfaces is considered here.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Birnbaun, M., J. Appl. Phys. 36, 3688 (1965).Google Scholar
2. Emmony, D. C., Howson, R. P. and Willis, L. J., Appl. Phys. Lett. 23, 598 (1977)Google Scholar
3. Zavecz, T. E. and Saifi, M. A., Appl. Phys. Lett. 26, 165 (1975).CrossRefGoogle Scholar
4. Koo, J. C. and Slusher, R. E., Appl. Phys. Lett. 28, 614 (1976).Google Scholar
5. Isenor, N. R., Appl. Phys. Lett. 31, 148 (1977).CrossRefGoogle Scholar
6. Leamy, H. J., Rozgonyi, G. A., Sheng, T. T. and Celler, G. K., Appl. Phys. Lett. 32, 535 (1978).Google Scholar
7. Maracas, G. N., Harris, G. L., Lee, C. A. and McFarlane, R. A., Appl. Phys. Lett. 33, 453 (1978).CrossRefGoogle Scholar
8. Oron, M. and Sorensen, G., Appl. Phys. Lett. 35, 782 (1979).Google Scholar
9. Jain, A. K., Kulkarni, V. N., Sood, D. K. and Uppal, J. S., J. Appl. Phys. 52, 4882 (1981).Google Scholar
10. Temple, P. A. and Soileau, M. J., IEEE J. Quantum Electron. QE- 17, 2067 (1981).Google Scholar
11. Fauchet, P. M. and Siegman, A. E., Appl. Phys. Lett. 40, 1678 (1982).CrossRefGoogle Scholar
12. Brueck, S. R. J. and Ehrlich, D. J., Phys. Rev. Lett. 48, 1678 (1982).Google Scholar
13. Young, J. F., Sipe, J. E., Preston, J. S. and van Driel, H. M., Appl. Phys. Lett. 41, 261 (1982).Google Scholar
14. van Driel, H. M., Sipe, J. E. and Young, J. F., Phys. Rev. Lett. 49, 1955 (1982).Google Scholar
15. Sipe, J. E., Young, J. F., Preston, J. S. and van Driel, H. M., Phys. Rev. B 27, 1141 (1983).Google Scholar
16. Young, J. F., Preston, J. S., van Driel, H. M. and Sipe, J. E., Phys. Rev. B 27, 1155 (1983).Google Scholar
17. Young, J. F., Preston, J. S., Sipe, J. E. and van Driel, H. M., Phys. Rev. B 27, 1424 (1983).Google Scholar
18. For a comprehensive review, see Maradudin, A. A., in Surface Polaritons, ed. by Agranovich, V. M. and Mills, D. L. (North-Holland, Amsterdam, 1982), pp. 405510.Google Scholar
19. Rayleigh, Lord, Philos. Mag. 14, 60 (1907);CrossRefGoogle Scholar
19a Proc. R. Soc. London, Ser. A 79, 399 (1907).Google Scholar
20. Manin, A., Toigo, F. and Celli, V., Phys. Rev. B 11, 2777 (1974);Google Scholar
20a Jha, S. S., Kirtley, J. R. and Tsang, J. C., Phys. Rev. B 22, 3978 (1982).Google Scholar
21. Sheng, P., Stepheman, R. S. and Sanda, P. N., Phys. Rev. B 26, 2907 (1982).Google Scholar
22. Born, M. and Wolf, E., Principles of Optics (Pergamon, New York, 1975),Chapt. 1.Google Scholar