Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T16:37:15.983Z Has data issue: false hasContentIssue false

Texture development during hot extrusion of a gamma titanium aluminide alloy

Published online by Cambridge University Press:  26 February 2011

M. Oehring
Affiliation:
GKSS Research Centre, Institute for Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
F. Appel
Affiliation:
GKSS Research Centre, Institute for Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
H.-G. Brokmeier
Affiliation:
GKSS Research Centre, Institute for Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
U. Lorenz
Affiliation:
GKSS Research Centre, Institute for Materials Research, Max-Planck-Str. 1, D-21502 Geesthacht, Germany
Get access

Abstract

The evolution of preferred orientations during processing appears to be of significant importance for the use of γ titanium aluminide alloys, since the desired lamellar microstructures exhibit a strong anisotropy of mechanical properties. As texture evolution certainly is dependent on several factors, involving deformation properties, recrystallization kinetics and particularly the phase constitution, different processing temperatures were investigated. By comparing the results it is indicated that the determined textures can be understood by the deformation modes of the dominating phase at hot-working temperature and the subsequent phase transformations.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kim, Y-W. and Dimiduk, D.M., Structural Intermetallics 1997, ed. Nathal, M.V., Darolia, R., Liu, C.T., Martin, P.L., Miracle, D.B., Wagner, R. and Yamaguchi, M. (TMS, Warrendale, PA, 1997), pp. 531543.Google Scholar
2. Dimiduk, D.M., Mater. Sci. Eng. A 263, 281 (1999).Google Scholar
3. Appel, F. and Wagner, R.: Mater. Sci. Eng. R 22, 187 (1998).Google Scholar
4. Bartels, A., Schillinger, W., Graβl, G. and Clemens, H., Gamma Titanium Aluminides 2003, ed Kim, Y-W., Clemens, H., Rosenberger, A.H. (TMS, Warrendale, PA, 2003), pp. 275296.Google Scholar
5. Cahn, R.W., High Temperature Aluminides and Intermetallics, ed. Whang, S.H., Liu, C.T., Pope, D.P. and Stiegler, J.O. (TMS, Warrendale, PA, 1990), pp. 245270.Google Scholar
6. Oehring, M., Lorenz, U., Appel, F. and Roth-Fagaraseanu, D., Structural Intermetallics 2001, ed. Hemker, K.J., Dimiduk, D.M., Clemens, H., Darolia, R., Inui, H., Larsen, J.M.. Sikka, V.K., Thomas, M. and Whittenberger, J.D. (TMS, Warrendale, PA, 2001), pp. 157166.Google Scholar
7. Brokmeier, H.-G., Zink, U., Schnieber, R., and Witassek, B., Texture and Anisotropy of Polycrystals, ed. Schwarzer, R. (TTP Transtech Publications, Zürich), Mater. Sci. Forum 273–275, 277 (1998).Google Scholar
8. Tobisch, J. and Bunge, H.J., Textures 1, 125 (1972).Google Scholar
9. Dahms, M. and Bunge, H.J., J. Appl. Cryst. 22, 439 (1989).Google Scholar
10. Johnson, D.R., Inui, H., and Yamaguchi, M., Acta mater. 44, 2523 (1996).Google Scholar
11. Calnan, E.A. and Clews, C.J.B., Phil. Mag. 41, 1085 (1950).Google Scholar
12. Humphreys, F.J. and Hatherly, M., Recrystallization and Related Phenomena (Pergamon, Oxford, 1995).Google Scholar
13. Appel, F., Phys. stat. sol. (a) 116, 153 (1989).Google Scholar
14. Appel, F., Sparka, U. and Wagner, R., Intermetallics 7, 325 (1999).Google Scholar
15. Zhang, W.J., Lorenz, U., and Appel, F., Acta mater. 48, 2803 (2000).Google Scholar