Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T12:55:06.134Z Has data issue: false hasContentIssue false

Texture and Grain Boundary Structure Dependence of Hillock Formation in Thin Metal Films

Published online by Cambridge University Press:  10 February 2011

Matithew M. Nowell
Affiliation:
TexSEM Laboratories, Draper, UT 84020
David P. Field
Affiliation:
TexSEM Laboratories, Draper, UT 84020
Get access

Abstract

The development of hillocks on metal films during annealing is detrimental to downstream processing of integrated circuit structures. This work focuses upon the local character of texture and grain boundary structure near hillocks in metal films. It is apparent from the results that local grain boundary structure and texture strength are important parameters in identifying locations in the films that are preferentially susceptible to failure under given conditions. Results in aluminum and platinum films indicate that non-(111) oriented grains preferentially contain hillocks. In addition, (111) oriented grains with boundaries characterized by high angle rotations about random axes are prone to hillock formation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sanchez, J. E., Mater. Res. Soc. Symp. Proc. 343, 641 (1994).Google Scholar
2. Vaidya, S., Sinha, A.K., Thin Solid Films 75, 253 (1981).Google Scholar
3. Campbell, A. N., Mikawa, R. E., Knorr, D. B., J. Electron. Mater. 22, 589 (1993).Google Scholar
4. Knorr, D. B., Mater. Res. Soc. Symp. Proc. 309, 75 (1993).10.1557/PROC-309-75Google Scholar
5. Knorr, D. B., Rodbell, K. P., J. Appl. Phys. 79, 2409 (1996).Google Scholar
6. Harper, J. M. E., Rodbell, K. P., J. Vac. Sci. Technol. B15, 763 (1997).10.1116/1.589407Google Scholar
7. Harris, K. E., King, A. H., Mater. Res. Soc. Symp. Proc. 391, 73 (1995).Google Scholar
8. Bacconnier, B., Lormand, G., Papapietro, M., Achard, M., Papon, A. M., J. Appl. Phys. 64, 6483 (1988).10.1063/1.342065Google Scholar
9. Klinger, L. M., Levin, L., Mater. Res. Soc. Symp. Proc. 391, 271 (1995).10.1557/PROC-391-271Google Scholar
10. Gladkikh, A., Glickman, E., Karpovsky, M., Lereah, Y, Palevski, A., Shubert, J., Mater. Res. Soc. Symp. Proc. 391, 293 (1995).10.1557/PROC-391-283Google Scholar
11. Adams, B. L., Wright, S. I., Kunze, K., Metall. Trans. 24, 819 (1993).10.1007/BF02656503Google Scholar
12. Field, D. P., Dingley, D. J., J. Electron. Mater. 25, 1767 (1996).Google Scholar
13. Troost, K. Z., Beitr. Elektronenmikroskop. Direktabb. Oberfl. 25, 27 (1992).Google Scholar
14. Frank, F. C., Metall. Trans. A 19, 403 (1988).Google Scholar
15. Morawiec, A., Field, D. P., Philos. Mag. A 73, 1113 (1996).Google Scholar