Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T08:33:39.818Z Has data issue: false hasContentIssue false

The Template Technique Applied to Epitaxial Growth of CrSi2 on Silicon (111)

Published online by Cambridge University Press:  15 February 2011

John E. Manan
Affiliation:
Department of Electrical Engineering, Colorado State University, Fort Collins, CO 80523
Robert G. Long
Affiliation:
Department of Electrical Engineering, Colorado State University, Fort Collins, CO 80523
André Vantomme
Affiliation:
Department of Electrical Engineering, Colorado State University, Fort Collins, CO 80523
Marc-A. Nicolet
Affiliation:
California Institute of Technology, Pasadena, CA 91125
Get access

Abstract

The template growth technique was applied to the growth of CrSi2 thin films on Si(111) by UHV E-gun evaporation. A 4He+ channeling yield of -50% was obtained for an epitaxial -2100 Å-thick film of continuous morphology grown at 450° C The heteroepitaxial relationship is CrSi2 (001) / Si (lll) with CrSi2[210] ∥ Si<110>.

In the case of film formation simply via reactive deposition epitaxy (RDE, chromium evaporation onto hot substrates) a severe crystallinity-Morphology tradeoff is always observed. Continuous films are formed at low temperature but no long-range epitaxy is found. On the other hand, high temperature annealing of these films induces the formation of islands that show good epitaxial alignment with the substrate. This tradeoff was addressed with the template growth technique.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Nava, F., Tien, T., and Tu, K.N., J. Appl. Phys. 57 (6), 2018 (1985).CrossRefGoogle Scholar
2. Bost, M.C. and Mahan, John E., J. Appl. Phys. 63 (3), 839 (1988).Google Scholar
3. Mattheiss, L.F., Phys. Rev. B, Vol. 43, No. 2, 1863 (1991).CrossRefGoogle Scholar
4. White, Alice E., Short, K.T., and Eaglesham, D.J., Appl. Phys. Lett. 56 (13), 1260 (1990).Google Scholar
5. Haderbache, L., Wetzel, P., Pini, C., Peruchetti, J.C., Bolmont, D., and Gewinner, G., Surf. Sci. 209, L139 (1989).Google Scholar
6. Fathauer, R.W., Grunthaner, P.J., Lin, T.L., Chang, K.T., Mazur, J.H., and Jamieson, D.N., J. Vac. Sci. Technol. B6 (2), 708 (1988).Google Scholar
7. Mahan, John E., Geib, Kent M., Robinson, G.Y., Bai, G., and Nicolet, M-A., J. Vac. Sci. Technol. B9 (1), 64 (1991).CrossRefGoogle Scholar
8. Vantomme, André, Nicolet, Marc-A., Long, Robert G., Mahan, John E., and Pool, Frederick S., “Reactive Deposition Epitaxy of CrSi2,” Appl. Surf. Sci. (in press)Google Scholar
9. Dudda, Chr., Mantl, S., Dieker, Ch., Dolle, M., and Lüth, H., Nucl. Instr. Methods B80/81. 764 (1993).CrossRefGoogle Scholar
10. CrSi2 lattice parameter values taken from Engströn, I. and Lönnberg, B., J. Appl. Phys. 63 (9), 4476 (1988).Google Scholar
11. Fathauer, R.W., Grunthaner, P.J., Lin, T.L., Chang, K.T., and Mazur, J.H. (Mat. Res. Soc. Symp. Proc. Vol. 116, Pittsburgh, PA, 1988) pp. 453458.Google Scholar
12. Becker, James P., Long, Robert G., and Mahan, John E., “Reflection High Energy Electron Diffraction Patterns of Carbide-Contaminated Silicon Surfaces,” J. Vac. Sci. Technol. (in press).Google Scholar
13. Mahan, John E., Geib, Kent M., Robinson, G.Y., Bai, G., and Nicolet, M-A., J. Vac. Sci. Technol. B9 (1), 64 (1991).CrossRefGoogle Scholar
14. Doolittle, L.R., Nucl. Instr. Meth. B9, 344 (1985).Google Scholar