Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-27T03:10:13.772Z Has data issue: false hasContentIssue false

Temperature Dependence of the Picosecond Photocurrent in Stretched Trans-Polyacetylene Films with Below Gap Excitation

Published online by Cambridge University Press:  25 February 2011

A. D. Walser
Affiliation:
Institute for Ultrafast Spectroscopy and Lasers Electrical Engineering Department The City College of New York, 138th St. and Convent Ave. N.Y., N.Y. 10031
R. Dorsinville
Affiliation:
Institute for Ultrafast Spectroscopy and Lasers Electrical Engineering Department The City College of New York, 138th St. and Convent Ave. N.Y., N.Y. 10031
R. Tubino
Affiliation:
Istituto di Fisica dell‘Universita’, Via Vienna 2, Sassari and Istituto di Chimica delle Macromolecole, CNR, Italy
R. R. Alfano
Affiliation:
Institute for Ultrafast Spectroscopy and Lasers Electrical Engineering Department The City College of New York, 138th St. and Convent Ave. N.Y., N.Y. 10031
Get access

Abstract

The temperature dependence of the picosecond photocurrent with below gap excitation (1.06 μm) has been measured for a highly oriented form of trans-polyacetylene. The 1-d picosecond photocurrent is independent of temperature. The 3-d picosecond photo-current is temperature dependent with an activation energy of 63 meV. These results demonstrate the photoproduction of nonlinear charged carriers ( solitons and polarons) at energies that are below the principal interband absorption edge.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Etemad, S., Heeger, A. J., and MacDiarmid, A. G., Annu. Rev. Phys. Chem. 33, 443469–(1982).CrossRefGoogle Scholar
2. Su, W. P., Schrieffer, J. R., and Heeger, A. J., Phys. Rev. Lett. 42, 1698 (1979), andGoogle Scholar
Phys. Rev. B 22, 2099 (1980).Google Scholar
3. Rice, M. J., Phys. Lett. 71A, 152 (1979).CrossRefGoogle Scholar
4. Takayama, H., Lin-Lin, Y. R., and Maki, K., Phys. Rev. B, 21, 2388 (1980).Google Scholar
5. Orenstein, J. and Baker, G., Phys. Rev. Lett. 49, 1043 (1982).Google Scholar
6. Vardeny, Z., Strait, J., Moses, D., Chung, T. T. and Heeger, A. J., Phys. Rev. Lett. 49, 1657 (1982).CrossRefGoogle Scholar
7. Shank, C. V., Fork, R.L., Orenstein, J., and Baker, G. L., Phys. Rev. Lett. 49, 1660 (1982).CrossRefGoogle Scholar
8. Blanchet, Graciela. B., Fincher, C. R., Chung, T. C., and Heeger, A. J., Phys. Rev. Lett. 50, 1938 (1983).Google Scholar
9. Walser, A., Seas, A., Dorsinville, R., Alfano, R. R., and Tubino, R., Solid State Communications, 67, 333 (1988).Google Scholar
10. Dorsinville, R., Krimchansky, S., Alfano, R. R., Birman, J. L. Tubino, R. and Dellepiane, G., Solid State Communications, 56, 857 (1985).Google Scholar
11. Dorsinville, R., Szalkiewicz, M., Tubino, R., Birman, J. L., and Alfano, R. R., Synthetic Metals, 17, 509 (1987).Google Scholar
12. Tubino, R., Dorsinville, R., Seas, A., Birman, J. and Alfano, R. R., Phys. Rev. B, 38, 8318, (1988).CrossRefGoogle Scholar
13. Sinclair, M., Moses, D., Friend, R. H., and Heeger, A. J., Phys. Rev. B, 36, 4296 (1987).CrossRefGoogle Scholar
14. Blanchet, Gracia B., Fincher, C. R., and Heeger, A. J., Phys. Rev., 51, 2132 (1983).Google Scholar
15. Rothberg, L., Jedju, T. M., and Baker, G. L., IEEE J. of Quant. Electron., 24, 311 (1988).CrossRefGoogle Scholar
16. Moses, D., Feldblum, A., Ehrenfreund, E., and Heeger, , Phys. Rev., 26, 3361 (1982)Google Scholar
17. Lauchlan, L., Etemad, S., Chung, T. C., Heeger, A. J., and MacDiarmid, A. G., Phys. Rev. B. 24, 3701 (1981).Google Scholar