Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T11:10:05.015Z Has data issue: false hasContentIssue false

Temperature Dependence of Optical Transitions of One Dimensional InGaAs/GaAs Quantum Structures

Published online by Cambridge University Press:  01 February 2011

Zhixun Ma
Affiliation:
[email protected], Lawrence Berkeley National Lab, EETD, 1 Cyclotron Rd, Berkeley, CA, 94720, United States
Todd Holden
Affiliation:
[email protected], Queensborough Community College of CUNY, Physics Department, Bayside, NY, 11364, United States
Zhiming Wang
Affiliation:
[email protected], University of Arkansas, Department of Physics, Fayetteville, AR, 72701, United States
Samuel S. Mao
Affiliation:
[email protected], Lawrence Berkeley National Lab, Berkeley, CA, 94720, United States
Gregory J. Salomo
Affiliation:
[email protected], University of Arkansas, Department of Physics, Fayetteville, AR, 72701, United States
Get access

Abstract

We have studied the temperature dependence of CER spectra of layered InGaAs QWRs and QDCs and found strain-induced splitting of lh and hh states occur in both InGsAs and GaAs layers. By fitting experimental data using Varshni law and Bose-Einstein type relation, various parameters are obtained, which are similar to those of bulk GaAs. We pointed out that a caution must be excised when extracting the electron-phonon interaction parameters by subtracting the thermal dilation part from the experimental data of the embedded semiconductor microstructures because in these structures the temperature-induced lattice-dilation may produce additional strain besides the lattice mismatch.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Bimberg, D., Grundmann, M., and Ledentsov, N.N., Quantum Dot Heterostructures (Wiley, Chichester, 1999)Google Scholar
[2] Wang, Zh. M., Mazur, Yu. I., Shultz, J. L., and Salamo, G. J., Mishima, T. D. and Johnson, M. B., J. Appl. Phys. 99. 033705 (2006)Google Scholar
[3] GutiÈrrez, H. R., Magalhães-Paniago, R., Bortoleto, J. R. R. and Cotta, M. A., Appl. Phys Lett. 85, 3581 (2004)Google Scholar
[4] Grundmann, M., Stier, O., and Bimberg, D., Phys. Rev. B 50, 14187 (1994)Google Scholar
[5] Pollak, Fred. H. and Shen, H., Materials Science and Engineering, R10, 275 (1993).Google Scholar
[6] Mazur, Yu. I., Ma, W. Q., Wang, X., Wang, Z. M., Salamo, G. J., Xiao, M., Mishima, T. D. and Johnson, M. B., Appl. Phys. Lett. 83, 987 (2003)Google Scholar
[7] Varshni, Y. P., Physica (Utrecht) 34, 149 (1967)Google Scholar
[8] Ortner, G., Schwab, M., and Bayer, M., Pässler, R., Fafard, S., Wasilewski, Z., and Hawrylak, P., and Forchel, A., Phys. Rev. B 72, 085328 (2005)Google Scholar
[9] ViÒa, L., Logothetidis, S. and Cardona, M., Phys. Rev. B 30, 1979 (1984)Google Scholar
[10] Lautenschlager, P., Carriga, M., Logothetidis, S., and Cardona, M., Phys. Rev. B 35, 9174 (1987)Google Scholar