Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-07T00:54:42.974Z Has data issue: false hasContentIssue false

Temperature Dependence of Implantation Damage in Strained-Layer Superlattices

Published online by Cambridge University Press:  25 February 2011

D. R. Myers
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
G. W. Arnold
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
L. R. Dawson
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
R. M. Biefeld
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
C. R. Hills
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
B. L. Doyle
Affiliation:
Sandia National Laboratories, Albuquerque, NM 87185
Get access

Abstract

We have characterized damage production in both (InGa)As/GaAs and Ga(AsP)/GaP strained-layer superlattices for silicon implants at 80 K, 300 K or 673 K at fluences sufficient to induce compositional disordering of the superlattice layers. Implants at low temperatures (80 K for the (InGa)As/GaAs system, 300 K and below in the Ca(AsP)/GaP system) are characterized by well-defined amorphous layers at depths consistent with the predictions of ion range codes. Implants at higher temperatures are characterized by greatly reduced damage levels with substantial densities of extended defects located near the mean ion range. Point defect clusters are preferentially located in the ternary layers in the (InGa)As/GaAs SLS at the deepest part of the implanted zone. Despite the absence of amorphous layer formation, precipitous stress relief still occurs for the Si-implanted (InGa)As/GaAs SLS.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Myers, D. R., Barnes, C. E., Arnold, G. W., Dawson, L. R., Biefeld, R. M., Zipperian, T. E., Gourley, P. L., and Fritz, I. J., Layered Structures, Evitaxy. and Interfaces, edited by Gibson, J. M. and Dawson, L. R., (Materials Research Society, Pittsburg, 1985), p. 313.Google Scholar
2. Arnold, G. W., Picraux, S. T., Peercy, P. S., Myers, D. R., Biefeld, R. M., and Dawson, L. R., Layered Structures, Epitaxy. and Interfaces, edited by Gibson, J. M. and Dawson, L. R., (Materials Research Society, Pittsburg, 1985), p. 307.Google Scholar
3. Myers, D. R., Arnold, G. W., Zipperian, T. E., Dawson, L. R., Biefeld, R. M., Fritz, I. J., and Barnes, C. E., J. Appl. Phys. 60, 1131 (1986).Google Scholar
4. Arnold, G. W., Picraux, S. T., Myers, D. R., Doyle, B. L., Peercy, P. S., Biefeld, R. M., and Dawson, L. R., presented at the 1986 MRS Fall Meeting, Boston, MA, 1986 (unpublished).Google Scholar
5. Myers, D. R., Picraux, S. T., Doyle, B. L., Arnold, G. W., and Biefeld, R. M., J. Appl. Phys. 60, 3631 (1986).Google Scholar
6. Neuman, D. A., Zabel, H., and Morkoc, H., Materials Research Society Symposium Proceedings (the Materials Research Society, Pittsburg, PA, 1985), Vol.37, p. 47.Google Scholar
7. EerNisse, E. P., Appl. Phys. Lett. 18, 581 (1971).Google Scholar
8. Biersack, J. P. and Haggmark, L. G., Nucl. Instrum. Methods 174, 257 (1980).Google Scholar
9. Ralston, J., Wicks, G. W., Eastman, L. F., DeCooman, B. C., and Carter, C. B., J. Appl. Phys. 59, 120, (1986).Google Scholar
10. Kimerling, L. C., Solid-State Electronics 21, 1391 (1978).Google Scholar
11. Whittom, J. L., Carter, G., Baruch, J. N., and Grant, W. A., Radiation Effects, 16, 101 (1972).Google Scholar
12. Picraux, S. T., in Ion Implantation in Semiconductors and Other Materials, edited by Crowder, B. L., (Plenum, New York, 1973) p. 641.Google Scholar
13. Gamo, K., Inada, T., Mayer, J. W., Eisen, F. H., and Rhodes, C. G., Radiation Effects 33, 85 (1977).Google Scholar