Article contents
Tailoring of Mechanical Properties of Diisocyanate Crosslinked Gelatin-Based Hydrogels
Published online by Cambridge University Press: 28 June 2013
Abstract
Polymer network formation is an important tool for tailoring mechanical properties of polymeric materials. One option to synthesize a network is the addition of bivalent crosslinkers reacting with functional groups present in a polymer. In case of polymer network syntheses based on biopolymers, performing such a crosslinking reaction in water is sometimes necessary in view of the solubility of the biopolymer, such as gelatin, and can be beneficial to avoid potential contamination of the formed material with organic solvents in view of applications in biomedicine. In the case of applying diisocyanates for the crosslinking in water, it is necessary to show that the low molecular weight bifunctional crosslinker has fully reacted, while tailoring of the mechanical properties of the resulting hydrogels is possible despite the complex reaction mechanism. Here, the formation of gelatin-based hydrogel networks with the diisocyanates 2,4-toluene diisocyanate, 1,4-butane diisocyanate, and isophorone diisocyanate is presented. It is shown that extensive washing of materials is required to ensure full conversion of the diisocyanates. The use of different diisocyanates gives hydrogels covering a large range of Young’s moduli (12-450 kPa). The elongations at break (up to 83%) as well as the maximum tensile strengths (up to 410 kPa) of the hydrogels described here are much higher than for lysine diisocyanate ethyl ester crosslinked gelatin reported before. Rheological investigations suggest that the network formation in some cases is due to physical interactions and entanglements rather than covalent crosslink formation.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2013
References
REFERENCES
- 4
- Cited by