Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T14:19:43.978Z Has data issue: false hasContentIssue false

Tailoring of Carbon Nanotube Microstructure Using Poly(acrylic acid) and Poly(allylamine hydrochloride)

Published online by Cambridge University Press:  01 February 2011

Lei Liu
Affiliation:
[email protected] A&M UniversityMechanical Engineering, Polymer Technology Center3123 TAMU College Station Texas 77843-3123United States
Jaime C. Grunlan
Affiliation:
[email protected], Texas A&M University, Mechanical Engineering, Polymer Technology Center, 3123 TAMU, College Station, Texas, 77843-3123, United States
Get access

Abstract

Poly(acrylic acid) (PAA) and poly(allylamine hydrochloride) (PAH) were used to tailor the microstructure of single-walled carbon nanotubes (SWNTs) in both aqueous solutions and dry composite films. Microstructural changes were achieved as the pH of aqueous suspensions were changed, as evidenced by elevated suspension viscosity, scanning electron microscopy and electrical conductivity measurements. The ability to tailor microstructure is useful for aqueous SWNT processing and solid polymer nanocomposites.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Grossiord, N., Loos, J., Regev, O., and Koning, C. E., Chem. Mater., 18, 1089 (2006).Google Scholar
2. Tasis, D., Tagmaterchis, N., Bianco, A., and Prato, M., Chem. Rev., 106, 1105 (2006).Google Scholar
3. Ajayan, P. M., Chem. Rev., 99, 1787 (1999).Google Scholar
4. Islam, M. F., Rojas, E., Bergey, D. M., Johnson, A. T., and Yodh, A. G., Nano. Lett., 3, 269 (2003).Google Scholar
5. Balasubramanian, K. and Burghard, M., Small, 1, 180 (2005).Google Scholar
6.B. Zhao, Hu, H., Yu, A., Perea, D., and Haddon, R. C., J. Am. Chem, Soc., 127, 8197 (2005).Google Scholar
7. Sun, Y. P., Huang, W., Lin, Y., Fu, K., Kitaygorodskiy, A., Riddle, L. A., Yu, Y. J., and Carroll, D. L., Chem. Mater., 13, 2864 (2001).Google Scholar
8. Moore, V. C., Strano, M. S., Haroz, E. H., Hauge, R. H., Smalley, R. E., Schmidt, J., and Talmon, Y., Nano Lett., 3, 1379 (2003).Google Scholar
9. Sinani, V. A., Gheith, M. K., Yaroslavov, A. A., Rakhnyanskaya, A. A., Sun, K., Mamedov, A. A., Wicksted, J. P., and Kotov, N. A., J. Am. Chem, Soc., 127, 3463 (2005).Google Scholar
10. Star, A., Steuerman, D. W., Heath, J. R., and Stoddart, J. F., Angew. Chem. Int. Ed., 41, 2508 (2002).Google Scholar
11. Kam, N. W. S., Jessop, T. C., Wender, P. A., and Dai, H., J. Am. Chem. Soc., 126, 6850 (2004).Google Scholar
12. Bianco, A., Kostarelos, K., and Partidos, C. D., and Prato, M., Chem. Commun., 571 (2005).Google Scholar
13. Choi, J. and Rubner, M. F., Macromolecules, 38, 116 (2005).Google Scholar
14. Grunlan, J. C., Liu, L., and Kim, Y. S., Nano. Lett., ASAP article.Google Scholar
15. Schaefer, D. W., Zhao, J., Brown, J. M., Anderson, D. P., and Tomlin, D. W., Chem. Phys. Lett., 375, 369 (2003).Google Scholar