Published online by Cambridge University Press: 21 February 2011
Zirconium carbide has been synthesized using (RO)4Zr, a liquid organometallic precursor in a newly developed Triple Torch Plasma Reactor. Thermodynamic equilibrium simulations indicate that in the temperature range of 1,800 - 3,800 K, zirconium carbide can be formed by plasma pyrolysis. The calculation results also suggest that by adding a certain amount of CO2 into the plasma, the excess carbon can be removed. The product is characterized with X-ray powder diffraction, SEM and BET. X-ray powder diffraction profiles support the results predicted by the equilibrium calculations. The product powder is porous and spherical. The specific area of the powder measured by BET is 140 m2/gram.