Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-24T18:29:44.243Z Has data issue: false hasContentIssue false

Synthesis of Silicon Based Opal by Chemical Reduction of Silica Opal

Published online by Cambridge University Press:  26 February 2011

Ali E. Aliev
Affiliation:
[email protected], University of Texas at Dallas, NanoTech Institute, 7825 Maccalu blvd., 1506, Dallas, TX, 75252, United States, 9728836543, 9728836529
M. A. O. Royer
Affiliation:
[email protected], University of Texas at Dallas, NanoTech Institute, Richardson, TX, 75083, United States
A. A. Zakhidov
Affiliation:
[email protected], University of Texas at Dallas, NanoTech Institute, Richardson, TX, 75083, United States
R. H. Baughman
Affiliation:
[email protected], University of Texas at Dallas, NanoTech Institute, Richardson, TX, 75083, United States
Get access

Abstract

By reduction of SiO2 opal in atmosphere of nitrogen (80%)-helium (15%)-hydrogen (5%) gas mixture at various temperatures we tuned the dielectric contrast ratio and band gap of photonic crystal (PC) up to 10 %. The SEM images dose not show any detectible change in lattice parameters, whereas the elemental analysis shows remarkable decrease of oxygen content. The shift of reflectance spectra toward the long wavelength and increase of transmission in infrared region confirm the redaction of silica and partial transformation to the silicon.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yablonovitch, E., Phys. Rev. Lett. 58 (1987) 2059.Google Scholar
2. John, S., Phys Rev Lett. 58 (1987) 2486.Google Scholar
3. Gralak, B., Enoch, S. and Tayeb, G.. Anomalous refractive properties of photonic crystals, J. Opt. Soc. Of Am. A 17 (2000) 1012.Google Scholar
4. Notomi, M.. Theory of light propagation in strongly modulated photonic crystals:Refractionlike behavior in the vicinity of the photonic band gap, Phys. Rev. B 62 (2000) 10696.Google Scholar
5. Luo, C. Y., Johnson, S. G. and Joannopoulos., J.D. All-angle negative refraction in a three-Dimensionally periodic photonic crystal, Appl. Phys. Lett. 81 (2002) 23522354.Google Scholar
6. Luo, C., Johnson, S. G., et al. “All-angle negative refraction without negative effective index,” Phys. Rev. B 65, 201104, (2002).Google Scholar
7. Cubukcu, E., Aydin, K., et al. Subwavelength resolution in a two-dimensional photoniccrystal-based superlens, Phys. Rev. Lett. 91 (2003) 207401.Google Scholar
8. Cubukcu, E., Aydin, K., et al. Negative refraction by photonic crystals, Nature 423 (2003) 604605.Google Scholar
9. Foteinopoulou, S. and Soukoulis, C. M.. “Negative refraction and left-handed behavior in twodimensional photonic crystals,” Phys. Rev. B 67 (2003) 235107.Google Scholar
10. Moussa, R., Foteinopoulou, S. and Soukoulis., C. M.Delay-time investigation of electromagnetic waves through homogeneous medium and photonic crystal left-handed materials,” Appl. Phys. Lett. 85 (2004) 11251127.Google Scholar
11. Parimi, P. V., Lu, W.T., et al. “Negative refraction and left-handed electromagnetism in microwave photonic crystals,” Phys. Rev. Lett. 92 (2004) 127401.Google Scholar
12. Li, Z. Y. and Lin, L. L.. “Evaluation of lensing in photonic crystal slabs exhibiting negative refraction, Phys. Rev. B 68 (2003) 245110.Google Scholar
13. Berrier, A., Mulot, M., et al. “Negative refraction at infrared wavelengths in a twodimensional photonic crystal,” Phys. Rev. Lett. 93 (2004) 73902.Google Scholar
14. Lin, S. Y., Fleming, J. G., Hetherington, D. L., Smith, B. K., Biswas, R., Ho, K. M., Sigalas, M. M., Zubrzycki, W., Kurtz, S. R., Bur, J., Nature 394 (1998) 251.Google Scholar
15. Yamamoto, N., Noda, S., Chutinan, A., Jpn. J. Appl. Phys 37 (1998) L1052.Google Scholar
16. Zakhidov, A. A., Baughman, R. H., Iqbal, Z., Cui, C., Khayrullin, I. I., Dantas, S. O., Marti, J., Ralchenko, V. G., Science 282,(1998) 897.Google Scholar
17. Aliev, A. E., Zakhidov, A. A., Baughman, R. H., Yablonovitch, E., Chalcogenide Inverted Opal Photonic Crystal as Infrared Pigments,International J. of Nanoscience, 5 (2006) 157.Google Scholar
18. Miguez, H., Tetreault, N., Yang, S. M., Kitaev, V., Ozin, G. A., Adv. Mater. 15 (2003) 78.Google Scholar
19. Blanco, A., Chomski, E., Grabtchak, S, Ibisate, M., John, S., Leonard, S. W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J. P., Ozin, G. A., O. van Driel. Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional band-gap near 1.5 μm, Nature, 405 (2000) 437.Google Scholar
20. M?guez, H., Meseguer, F., Lopez, C., Holgado, M., Andreasen, G., Mifsud, A., V. Forne. Germanium FCC Structure from a Colloidal Crystal Template. Langmuir, 16 (2000) 44054408.Google Scholar
21. Pallavidino, L., Razo, D. Santamaria, Geobaldo, F., Balestreri, A., Bajoni, D., Galli, M., Andreani, L. C., Ricciardi, C., Celasco, E., Quaglio, M., F. Giorgis. Synthesis, characterization and modelling of silicon based opals. Journal of Non-Crystalline Solids 352 (2006) 14251429.Google Scholar
22. Aliev, A. E., Akhmedzhanova, N. Kh., Krivorotov, V. F., Kholmanov, I. N., and A. A. Fridman. Thermal Conductivity of Opal Filled with a LiIO3 Ionic Conductor. Physics of the Solid State, 45, 1 (2003) 6168.Google Scholar
23. Kravets, V. G., Meier, C., Konjhodzic, D., Lorke, A., Wiggers, H., Infrared properties of silicon nanoparticles, J. of Appl. Phys., 97 (2005) 084306.Google Scholar