Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-08T01:22:07.014Z Has data issue: false hasContentIssue false

Synthesis of Self-Capped Metal Sulfide Nanoparticles

Published online by Cambridge University Press:  21 February 2011

Mike Lazell
Affiliation:
Manchester Materials Science Centre and the Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL. Email: [email protected]
Paul O'Brien
Affiliation:
Manchester Materials Science Centre and the Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL. Email: [email protected]
Get access

Abstract

In this paper we report the synthesis of metal sulfide nanocrystals, (CdS and ZnS), from the thermolysis, between 150 – 300 °C, in a dynamic vacuum, of the novel long chain asymmetric metal dithiocarbamates, bis(N-methyloctadecyldithiocarbamato) cadmium(II) or zinc(lI), [M {S2CN(C18H37)(CH3)}2].

These nanoparticles ‘self-cap’ during preparation. Different size nanocrystals were synthesised, at different temperatures and there was a change in phase from cubic to hexagonal CdS at a decomposition temperature greater than 300 °C.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Dounghong, D., Ramsden, J., and Grätzel, M., J. Am. Chem. Soc. 104, p. 2977 (1982).Google Scholar
2. Rossetti, R., Ellison, J. L., Gibson, J. M., and Brus, L. E., J. Chem. Phys. 80, p. 4464 (1984).Google Scholar
3. Henglein, A., Chem. Rev. 89, p. 1861 (1989).Google Scholar
4. Steigerwald, M. L. and Brus, L. E., Acc. Chem. Res. 23, p. 183 (1990).Google Scholar
5. Wang, Y. and Herron, N., J. Phys. Chem. 95, p. 525 (1991).Google Scholar
6. Weller, H., Adv. Mater. 5, p. 88 (1993).Google Scholar
7. Dabbousi, B. O., Bawendi, M. G., Onitsuka, O., and Rubner, M. F., Appl. Phys. Lett. 66, p. 1316 (1995).Google Scholar
8. Colvin, V. L., Schlamp, M. C., and Alivisatos, A. P., Nature 370, p. 354 (1994).Google Scholar
9. Hakimi, F., Bawendi, M. G., Tumminelli, R., and Haavisto, J. R., U.S. Patent 5,260,957 (1993).Google Scholar
10. Grätzel, C. K. and Grdtzel, M., J. Am. Chem. Soc. 101, p. 7741 (1979).Google Scholar
11. Hagfeldt, A. and Grdtzel, M., Chem. Rev. 95, p. 49 (1995).Google Scholar
12. Trindade, T., O'Brien, P., and Zhang, Xiao-mei, Chem. Mater. 9, p. 523 (1997).Google Scholar
13. Green, M. and O'Brien, P., Adv. Mater. Optics Elect. 7, p. 277 (1997).Google Scholar
14. Ludolph, B., Malik, M. A., O'Brien, P., and Revaprasadu, N., J. Chem. Soc., Chem. Comm. p. 1849 (1998) and references therein.Google Scholar
15. Green, M. and O'Brien, P., J. Chem. Soc., Chem. Comm. p. 2459 (1998).Google Scholar
16. Lazell, M. and O'Brien, P., J. Mat. Chem. 7, p. 1381 (1999).Google Scholar
17. Abe, K., Hanada, T., Yoshida, Y., Tanigaki, N., Takiguchi, H., Nagasawa, H., Nakamoto, M., Yamaguchi, T., and Yase, K., Thin Solid Films 329, p. 524 (1998).Google Scholar
18.JCPDS file 21-829.Google Scholar
19.JCPDS file 10-454.Google Scholar
20. Murray, C. B., Norris, B. G., and Bawendi, M. G., J. Am. Chem. Soc. 115, p. 8706 (1993).Google Scholar
21.JCPDS file 41-1049.Google Scholar
22. Bawendi, M. G., Kortan, A. R., Steigerwald, M. L. and Brus, L. E., J. Chem Phys. 11, p. 7282 (1989).Google Scholar