Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-02T19:53:37.495Z Has data issue: false hasContentIssue false

Synthesis of Microcrystalline Silicon Films by Low Energy Electron-Beam-Induced Deposition at Cryogenic Temperature

Published online by Cambridge University Press:  01 February 2011

Tetsuya Sato
Affiliation:
Univ. of Yamanashi Clean Energy Research Center Takeda-4, Kofu, Yamanashi 400–8511, Japan
Kiyokazu Nakagawa
Affiliation:
Univ. of Yamanashi Crystal Science and Tech., Miyamae-cho 7, Kofu, Yamanashi 400–0015, Japan
Yutaka Aoki
Affiliation:
Miyatsu Co., LTD. Uenohara 8154–36, Uenohara-cho, Kitatsuru-gun, Yamanashi 409–0112, Japan
Shouji Sato
Affiliation:
Miyatsu Co., LTD. Uenohara 8154–36, Uenohara-cho, Kitatsuru-gun, Yamanashi 409–0112, Japan
Get access

Abstract

We have proposed an advanced method for formation of semiconductor thin films at substrates temperatures below 100K. We have synthesized amorphous silicon (a-Si:H) and microcrystalline silicon (μc-Si:H) films using low-energy electron-beam-induced-chemical vapor deposition (EBICVD) onto cooled substrates which adsorb source gases (SiH4 or Si2H6) at cryogenic temperature. The temperature dependence on growth rate of the films, hydrogen content and optical constants were investigated. The μc-Si:H could be formed at 40–45 K on SiO2 using He-discharged-EBICVD with SiH4. The crystallinity of silicon was evaluated by Raman scattering spectroscopy and X-ray diffraction.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Utke, I., luisier, A., Hoffman, P., Laub, D., Buffat, P. A., Appl. Phy. Lett., 81, 3245 (2002).Google Scholar
2. Tanaka, M., Shimojo, M., Mitsuishi, K. and Furuya, K., Appl. Phys. A, 78, 543 (2004).Google Scholar
3. Sasaki, A., Isa, H., Liu, J., Akiba, S., Hanada, T. and Yoshimoto, M., Jpn. J. Appl. Phys. 41, 6534 (2002).Google Scholar
4. Liu, J., Barbero, C. J., Corbett, J. W., Rajan, K. and Leary, H., Mater. Res. Soc. Symp. 311, 239 (1993).Google Scholar
5. Hiraoka, K., Yamamoto, K., Kihara, Y., Takayama, T. and Sato, T., Astrophys. J., 514, 524 (1999);Google Scholar
Hiraoka, K., Takayama, T., Euchi, A., Handa, H. and Sato, T.,; Astrophys. J., 532, 1029 (2000);Google Scholar
Hiraoka, K., Sato, T., Sato, S., Sogoshi, N. and Yokoyama, T., Astrophys. J., 577, 265 (2002).Google Scholar
6. Hiraoka, K., Sato, T. and Takayama, T., Science, 292, 869 (2001).Google Scholar
7. Hiraoka, K. and Sato, T., Radiat. Phys. Chem., 60, 389 (2001).Google Scholar
8. Hiraoka, K., Sato, T., Sato, S., Hishiki, S., Suzuki, K., Takahashi, Y., Yokoyama, T. and Kitagawa, S., J. Phys. Chem. B, 105, 6950 (2001).Google Scholar
9. Langford, A.A., Fleet, M.L., Nelson, B.P., Lanford, W.A and Maley, N., Phys. Rev. B 45, 13367 (1992).Google Scholar
10. Shi, T. S., Sahu, S. N., Oehrlein, G. S., Hiraki, A. and Corbett, J. W., Phys. Status Solidi A, 74, 329 (1982).Google Scholar
11. Van de Walle, C. G., Denteneer, P. J. H., Bar-Yam, Y. and Pantelides, S. T., Phys Rev. B 39, 10791 (1989).Google Scholar
12. Fujiwara, H., Toyoshima, Y., Kondo, M. and Matsuda, A., J. Non-Cryst. Solids, 266–269, 38 (2000).Google Scholar
13. Fujiwara, H., Kondo, M. and Matsuda, A., Surf. Sci. 497, 333 (2002); Jpn. J. Appl. Phys., 41, 281 (2002).Google Scholar