No CrossRef data available.
Published online by Cambridge University Press: 21 March 2011
Dilute III-Nx-V1-x alloys were successfully synthesized by nitrogen implantation in GaAs and InP. The fundamental band gap energy for the ion beam synthesized III-Nx-V1-x alloys was found to decrease with increasing N implantation dose in a manner similar to that commonly observed in epitaxially grown GaNxAs1-x and InNxP1-x thin films. The fraction of N occupying anion sites (“active” N) in the GaNxAs1-x layers formed by N implantation was thermally unstable and decreased with increasing annealing temperature. In contrast, thermally stable InNxP1-x alloys with N mole fraction as high as 0.012 were synthesized by N implantation in InP. Moreover, the N activation efficiency in InP was at least a factor of two higher than in GaAs under similar processing conditions. The low N activation efficiency (<20%) in GaAs can be improved by co-implanting Ga and N in GaAs.