Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T09:35:35.411Z Has data issue: false hasContentIssue false

Synthesis of Cu2(ZnCd)SnS4 Absorber Material for Monograin Membrane Applications

Published online by Cambridge University Press:  25 February 2014

Godswill Nkwusi
Affiliation:
Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Inga Leinemann
Affiliation:
Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Jaan Raudoja
Affiliation:
Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Valdek Mikli
Affiliation:
Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Marit Kauk-Kuusik
Affiliation:
Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Mare Altosaar
Affiliation:
Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Enn Mellikov
Affiliation:
Department of Materials Science, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
Get access

Abstract

CZTS monograin powder samples were synthesized in CdI2 as flux material. The obtained materials were analysed by EDX, SEM, and Raman methods. It was found that Cd from flux was incorporated into the formed compound leading to the formation of solid solution Cu2Zn1-xCdxSnS4. The content of Cd in the compound was studied in the dependence of synthesis temperature and time. It was found that Cd content in the formed Cu2Zn1-xCdxSnS4 did not depend on synthesis duration at constant temperature and increased with temperature. The activation energy of the Cd incorporation process was estimated as 17.5 ± 2 kJ/mol.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Nagoya, A., Asahi, R., Wahl, R., and Kresse, G., “Defect formation and phase stability of Cu2ZnSnS4 photovoltaic material,” Phys. Rev. B, vol. 81, no. 11, p. 113202, Mar. 2010.CrossRefGoogle Scholar
Altosaar, M., Raudoja, J., Timmo, K., Danilson, M., Grossberg, M., Krustok, J., and Mellikov, E., “Cu2Zn1-xCdxSn(Se1-ySy)4 solid solutions as absorber materials for solar cells”, physica status solidi, vol. 205, no. 1, p. 167170, Jan. 2008.CrossRefGoogle Scholar
Seol, K. S., Lee, S.-Y., Lee, J.-C., Nam, H.-D., “Sol. Energy Mater. vol. 75, no. 155, 2003.Google Scholar
Maeda, T., Nakamura, S., and Wada, T., “First Principles Calculations of Defect Formation in In-Free Photovoltaic Semiconductors Cu2ZnSnS4 and Cu2ZnSnSe4 ”, Jpn. J. Appl. Phys., vol. 50, no. 4, p. 47, Apr. 2011.CrossRefGoogle Scholar
Nagoya, A., Asahi, R. and Kresse, G., “First-principles study of Cu2ZnSnS4 and the related band offsets for photovoltaic applications”, J. Phys. Condense Matter, vol. 12, no. 23, Sept, 2011,Google Scholar
Todorov, K., Tang, J., Bag, S., Gunawan, O., Gokmen, T., Zhu, Y., “Beyond 11% Efficiency: Characteristics of State-of-the-Art Cu2ZnSn(S,Se)4 Solar Cells”, Adv. Energy Mater, vol. 3, no.1, p. 3438, Jan. 2012.CrossRefGoogle Scholar
Leinemann, I., Raudoja, J., Grossberg, M., Altosaar, M., Meissner, D., Traksmaa, R., and Kaljuvee, T., “Comparison of Copper Zinc Tin Selenide Formation In Molten Potassium Iodide and Sodium Iodide As Flux Materials”, Conference of Young Scientists on Energy Issues Kaunas ( CD pub), p.18, 1822-7554, May, 2011.Google Scholar
Klavina, I., Kaljuvee, T., Timmo, K., Raudoja, J., Traksmaa, R., Altosaar, M., “Study of Cu2ZnSnSe4 monograin formation in molten KI starting from binary chalcogenides”, Thin Solid Films, vol. 519, no. 21, p. 73997402, 2012 CrossRefGoogle Scholar
Mellikov, E., Hiie, J., and Altosaar, M., “Powder materials and technologies for solar cells”, Int. J. Mater. Prod. Technol, vol. 28, no. 3/4, p. 291, 2007.CrossRefGoogle Scholar
Klavina, I., Raudoja, J., Altosaar, M., Mellikov, E., Meissner, D., and Kaljuvee, T., “CZTS (Cu2ZnSnSe4) Crystal Growth For Use in Monograin Membrane Solar Cells”, Conf. of Young Scientists on Energy Issues Kaunas, Lithuania, p.vii 345-vii353, May, 2010.Google Scholar
Nkwusi, G., Leinemann, I., Raudoja, J., Grossberg, M., Altosaar, M., Meissner, D., Traksmaa, R., and Kaljuvee, T., “Formation of Copper Zinc Tin Sulfide in Cadmium Iodide for Monograin Membrane Solar Cells”, Conf. of Young Scientists on Energy Issues, Kaunas, Vol. 2, P.II 38-II 46, 1822–7554, May, 2012.Google Scholar
Patnaik, P., Handbook of Inorganic ,Chemicals, p. 150, 761, 2002 [retirved from ftp://pvictor.homeftp.net on 10/02/2014] Google Scholar
Chen, S., Gong, X. G., Walsh, A., and Wei, S.-H., “Defect physics of the kesterite thin-film solar cell absorber Cu2ZnSnS4 ,” Appl. Phys. Lett, vol. 96, no 2, p. 13, 2010.Google Scholar
Pilvet, M., Kauk-Kuusik, M., Raudoja, J., Altosaar, M., Grossberg, M., Timmo, K., Varema, T., “Synthesis of Cu2ZnSnS4 monograin powders in liquid phase of cadmium iodide for photovoltaic applications', (private unpublished work Tall. Univ. Tech,) 2013.Google Scholar
Olekseyuk, I. D., Dudchak, I. V., “Phase equilibria in the Cu2-Zn-SnS2 System”, J. Alloy. Compd, vol. 368, p. 135143, 2004.CrossRefGoogle Scholar
Kuncewicz-Kupczyk, W., Kapała, J., Roszak, S., and Miller, M., “The thermodynamic properties of the gaseous dimer of CdI2 ,” J. Chem. Phys., vol. 108, no. 18, p. 7743, 1998.CrossRefGoogle Scholar
Timmo, K. et al. , unpublished work, Tallinn University of technology, 2013.Google Scholar