Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T00:24:26.135Z Has data issue: false hasContentIssue false

Synthesis of Complex-oxide Nanorods via Pulsed-laser Deposition

Published online by Cambridge University Press:  01 February 2011

John E Mathis
Affiliation:
[email protected], Embry-Riddle Aeronautical University, Physical Sciences, Daytona Beach, Florida, United States
Gyula Eres
Affiliation:
[email protected], Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee, United States
Claudia Cantoni
Affiliation:
Kyunghoon Kim
Affiliation:
[email protected], Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee, United States
Hans Christen
Affiliation:
[email protected], Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, Tennessee, United States
Get access

Abstract

Nanorods composed of complex oxides have been synthesized using hydrothermal and sol-gel methods, but pulsed-laser deposition (PLD) provides precise, layer-by-layer control of growth, and is the method of choice for synthesizing complex structures. However, producing complex-oxide nanorods by PLD has proved elusive.

Here we report on our efforts to produce nanorods composed of the best-understood complex oxide, strontium titanate (STO). The results suggest it is indeed possible to produce STO nanorods via PLD by using a template of MgO nanorods.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Dagotto, E., Hotta, T., and Moreo, A., Phys. Reports, vol. 344, Apr. 2001, pp. 1153.Google Scholar
[2] Thiel, S., Hammerl, G., Schmehl, A., Schneider, C.W., and Mannhart, J., Science, vol. 313, Sep. 2006, pp. 19421945.Google Scholar
[3] Cui, Y., Zhong, Z., Wang, D., Wang, W., and Lieber, C., Nano Lett., vol. 3, Feb. 2003, pp. 149152.Google Scholar
[4] Huang, Y., Duan, X., Cui, Y., and Lieber, C., Nano Lett., vol. 2, Feb. 2002, pp. 101104.Google Scholar
[5] Cui, Y. and Lieber, C.M., Science, vol. 291, Feb. 2001, pp. 851853.10.1126/science.291.5505.851Google Scholar
[6] Kim, Y.S., Ha, S., Kim, K., Yang, H., Choi, S., Kim, Y.T., Park, J.T., Lee, C.H., Choi, J., Paek, J., and Lee, K., Appl. Phys. Lett., vol. 86, May. 2005, pp. 213105–3.Google Scholar
[7] Huang, H., Tan, O.K., Lee, Y.C., Tran, T.D., Tse, M.S., and Yao, X., Appl. Phys. Lett., vol. 87, Oct. 2005, pp. 163123–3.Google Scholar
[8] Heo, W., Tien, L-C., and Norton, D. P., J. Mater. Res., vol. 20, Nov. 2005, pp. 30283033.Google Scholar
[9] Konenkamp, R., Word, R.C., and Schlegel, C., Appl. Phys. Lett., vol. 85, Dec. 2004, pp. 60046006.Google Scholar
[10] Gudiksen, M.S., Lauhon, L.J., Wang, J., Smith, D.C., and Lieber, C.M., Nature, vol. 415, Feb. 2002, pp. 617620.Google Scholar
[11] Wagner, R.S. and Ellis, W.C., Appl. Phys. Lett., vol. 4, Mar. 1964, pp. 8990.Google Scholar
[12] Nagashima, K., Yanagida, T., Tanaka, H., and Kawai, T., J. Appl. Phys., vol. 101, 2007, pp. 124304–7Google Scholar
[13] Nagashima, K., Yanagida, T., Tanaka, H., and Kawai, T., Appl. Phys. Lett., vol. 90, Jun. 2007, pp. 233103–3.Google Scholar
[14] Sutter, E. and Sutter, P., Nano Lett. vol. 8, Feb. 2008, pp. 411414.10.1021/nl0719630Google Scholar
[15] Kodambaka, S., Tersoff, J., Reuter, M. C., and Ross, F. M., Science, vol. 316, May 2007, pp. 729732.Google Scholar