Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-12T05:21:13.843Z Has data issue: false hasContentIssue false

Synthesis of Ca Decorated Carbon Nanostructures for Hydrogen Storage

Published online by Cambridge University Press:  31 January 2011

Daniele Mirabile Gattia
Affiliation:
[email protected], ENEA, MAT-COMP, Rome, Italy
Marco Vittori Antisari
Affiliation:
[email protected], ENEA, MAT-COMP, Rome, Italy
Renzo Marazzi
Affiliation:
[email protected], ENEA, MAT-COMP, Rome, Italy
Amelia Montone
Affiliation:
[email protected], ENEA, MAT-COMP, Rome, Italy
Emanuela Piscopiello
Affiliation:
[email protected], ENEA, MAT-COMP, Rome, Italy
Claudio Mingazzini
Affiliation:
[email protected], ENEA, MAT-ING, Faenza, Italy
Get access

Abstract

The AC powered electric arc has been used to synthesize single wall carbon nanohorns aggregates with Ca dispersed inside. To this purpose the electric arc has been ignited between two electrodes, one of which was constituted by a mixture of graphite and CaCO3. The experimental evidence on the microstructure and on the chemical composition has been obtained by observation with a transmission electron microscope equipped with X-ray microanalysis. X-ray diffraction revealed the presence of residual CaCO3 indicating that the process has still to be optimized. The experiment represents a first attempt to decorate carbon nanostructures with alkaline earth metals, in particular Ca, by this relatively simple method. These composites are theorized to adsorb relevant amounts of hydrogen. Further work will be focused to optimize the dispersion of Ca atoms in the carbon nanostructure.

Keywords

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. and Smalley, R. E., Nature 318, 162 (1985).Google Scholar
2. Yoon, M., Yang, S., Hicke, C., Wang, E., Geohegan, D., Zhang, Z., Phys. Rev. Lett. 100, 206806 (2008).Google Scholar
3. Geohegan, D. B., Hu, H., Puretzky, A. A., Zhao, B., Stuers-Barnett, D., Ivanov, I., DOE Hydrogen Program, FY 2006 Annual Progress Report.Google Scholar
4. Hu, H., Zhao, B., Puretzky, A. A., Rouleau, C. M., Styers-Barnett, D., Geohegan, D. B., Brown, C. M., Liu, Y., Zhou, W., Kabbour, H., Neumann, D.A., Ahn, C., in Tailoring of Single Walled Carbon Nanohorns for Hydrogen Storage and Catalyst Supports - Proceedings of Carbon 2007 - Seattle, WA.Google Scholar
5. Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., Takahashi, K., Chem. Phys. Lett. 309, 165 (1999).Google Scholar
6. Bandow, S., Kokai, F., Takahashi, K., Yudasaka, M., Qin, L. C., Iijima, S., Chem. Phys. Lett. 321, 514 (2000).Google Scholar
7. Takikawa, H., Ikeda, M., Hirahara, K., Hibi, Y., Tao, Y., Ruiz, P. A. J., Sakakibara, T., Itoh, S., Iijima, S., Physica B 323, 277 (2002).Google Scholar
8. Antisari, M. Vittori, Marazzi, R., Krsmanovic, R., Carbon 41, 2393 (2003).Google Scholar
9. Gattia, D. Mirabile, Antisari, M. Vittori, Marazzi, R., Nanotechnology 18, 255604 (2007).Google Scholar
10. Antisari, M. Vittori, Gattia, D. Mirabile, Marazzi, R., Piscopiello, E., Montone, A., in Nanotubes, Nanowires, Nanobelts and Nanocoils—Promise, Expectations and Status, edited by Bandaru, P., Grego, S., Kinloch, I. (Mater. Res. Soc. Symp. Proc. 1142, Warrendale, PA, 2009), 1142–JJ05.Google Scholar
11.NIST atomic spectra database - http://physics.nist.gov/PhysRefData/ASD/index.html.Google Scholar