Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T10:19:51.621Z Has data issue: false hasContentIssue false

Synthesis, Characterization and Application of Thin Film Carbon Nanotube Material

Published online by Cambridge University Press:  15 March 2011

Alexander N. Obraztsov
Affiliation:
Moscow State University, Faculty of Physics Moscow 119899, Russia Kochi University of Technology, Kochi 782-8502, Japan
Alexander P. Volkov
Affiliation:
Moscow State University, Faculty of Physics Moscow 119899, Russia
Get access

Abstract

The non-catalytical chemical vapor deposition (CVD) method was used to grow carbon thin film material consisting of plate-like nanosized graphite crystallites and multiwall carbon nanotubes with predominant orientation of both species by their crystallographic plane, corresponding to a graphite basal plane, along a normal to the film surface. A number of experimental techniques was used for examination and characterization of the film phase composition, morphology, and electron properties peculiarities. Low-field electron emission with highly density of emission sites and emission current was obtained for the film material and allow to demonstrate their applicability for sealed prototypes of light-emitting devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Himpsel, F.J., Knapp, J.A., VanVechten, J.A., Eastman, D.E., Phys. Rev. B, 20(2), 624 (1979).Google Scholar
2. Zhu, W., Kochanski, G.P., Jin, S., Seibles, L., J. Appl. Phys., 78(4), 2707 (1995).Google Scholar
3. Robertson, J., Diamond and Related Materials, 5, 797 (1996).Google Scholar
4. Kajihara, S.A., Antonelli, A., Bernholc, J., Car, R., Phys. Rev. Lett., 66(15), 2010 (1991).Google Scholar
5. Zhou, D., Krauss, A.R., Qin, L.C. et al. , J. Appl. Phys., 82(9), 4546 (1997).Google Scholar
6. Zhu, W., Kochaski, G.P., Jin, S., et al. , Appl. Phys. Lett., 67(8), 1157 (1995).Google Scholar
7. Lea, C., J. Phys. D: Appl. Phys., 6, 1105 (1973).Google Scholar
8. Suvorov, A.L. et al. , in Rev. ‘Le Vide, les Couches Minces’, Suppl. Au N 271, 326 (1994).Google Scholar
9. Tcherepanov, A.Y., Chakhovskoi, A.G., Sharov, V.B., J.Vac.Sci.Technol. B,13, 482 (1995).Google Scholar
10. Walter, K.C., Kung, H.H., Maggiore, C.J., Appl. Phys. Let., 71(10), 1320 (1997).Google Scholar
11. Gulyaev, Yu.V., Chernosatonskii, L.A. et al. , J. Vac. Sci. Technol. B, 13(2), 435 (1995).Google Scholar
12. Rinzler, A.G., Hafner, J.H., Nikolaev, P. et al. , Science, 269, 1550 (1995).Google Scholar
13. Heer, W.A. de, Chatelain, A., Ugarte, D., Science, 270, 1179 (1995).Google Scholar
14. Obraztsov, A.N., Pavlovsky, I.Yu., Volkov, A.P., JETP Lett., 68, 55 (1998).Google Scholar
15. Obraztsov, A.N., Volkov, A.P., Pavlovsky, I.Yu., JETP Lett., 69, 381 (1999).Google Scholar
16. Obraztsov, A.N., Pavlovsky, I.Yu., Volkov, A.P., J. Vac. Sci. Technol. B, 17, 674 (1999).Google Scholar
17. Obraztsov, A.N., Volkov, A.P., Pavlovsky, I.Yu., Diamond&Rel. Mat., 9, 1190 (2000).Google Scholar
18. Steeds, J.W., Gilmore, A., Bussmann, K.M., Butler, J.E., Diamond&Rel.Mat., 8, 996 (1999).Google Scholar
19. Sowers, A.T., Ward, B.L., English, S.L., Nemanich, R.J., Diamond&Rel.Mat.,9,1569 (2000).Google Scholar
20. Pavlovsky, I.Yu., Obraztsov, A.N., Pribory I Technika Experimenta, 1,152(1998) [Instrum.Exp.Techniques,41,280(1998)].Google Scholar
21. Obraztsov, A.N., Pavlovsky, I.Yu., Volkov, A.P., PCT Patent, WO99/44215.Google Scholar
22. Chieu, T.C., Dresselhaus, M.S., Endo, M., Phys. Rev. B, 26, 5867 (1982).Google Scholar
23. Bonard, J.-M., Stockli, T., Maier, F. et al. , Phys. Rev. Lett., 81(7), 1441 (1998).Google Scholar
24. Latham, R.V., Wilson, D.A., J. Phys. D: Appl. Phys., 14, 2139 (1981).Google Scholar
25. Hiura, H., Ebessen, T.W., Fujita, J., Tanigaki, K., Takada, T., Nature, 367, 148 (1994).Google Scholar
26. Donnet, J.B., Johnson, M.P., Norman, D.T., Wang, T.K., Carbon, 38, 1879 (2000).Google Scholar
27. Grieco, W.J., Howard, J.B., Rainey, L.C., Sande, J.B. Vander, Carbon, 38, 597 (2000)Google Scholar
28. Chen, X.H., Yang, H.S., Wu, G.T. et al. , J. of Cryst. Growth, 218, 57 (2000).Google Scholar
29. Huang, J.Y., Yasuda, H., Mori, H., Chem. Phys. Lett., 303, 130 (1999).Google Scholar
30. Kuznetsov, V.L., Chuvilin, A.L., Butenko, Yu.V. et al. , Chem.Phys. Lett., 289, 353 (1998).Google Scholar
31. Hong, S.-H., Korai, Y., Mochida, I., Carbon, 38, 805 (2000).Google Scholar
32. Chen, Y., Shaw, D.T., Guo, K., Appl. Phys. Lett., 76, 2469 (2000).Google Scholar