Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-12T05:30:05.043Z Has data issue: false hasContentIssue false

Synthesis and Unprecedented Electro-Optic Response Properties of Twisted π-System Chromophores

Published online by Cambridge University Press:  01 February 2011

Hu Kang
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113, USA
Antonio Facchetti
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113, USA
Hua Jiang
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113, USA
Peiwang Zhu
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113, USA
Tobin J. Marks
Affiliation:
Department of Chemistry and the Materials Research Center, Northwestern University, Evanston, IL 60208-3113, USA
Get access

Abstract

A series of unconventional twisted intramolecular charge-transfer (TICT) chromophores was designed and synthesized. These chromophores exhibit ultra-large first hyperpolarizabilities. The structural characteristic that promotes this unusual nonlinear optical response is a sterochemically enforced reduction of the D- π-A conjugation that enforces zwitterionic behavior in the ground state and provides a low-energy, large-oscillator strength intramolecular excitation feature. The consequence is that molecules with relatively small numbers of π-electrons exhibit responses far larger than those of traditional planar π-conjugated chromophores. At 1907 nm, non-resonant νβ values as high as -466,000 × 10-48 esu are observed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] For recent reviews see: (a) Clays, K. J., Nonlinear Opt. Phys. Mater. 12, 475 (2003). (b) L. Dalton, Adv. Polym. Sci. 158, 1 (2002) (c) Molecular Nonlinear Optics: Materials, Phenomena and Devices; Zyss, J., Ed. Chem. Phys. 245 (Special issue) (1999).Google Scholar
[2] Lee, M.; Katz, H. E.; Erben, C.; Gill, D. M.; Gopalan, P.; Heber, J. D.; McGee, D. J. Science 298, 1401 (2002).Google Scholar
[3] (a) Staub, K., Levina, G. A., Barlow, S., Kowalczyk, T. C., Lackritz, H. S., Barzoukas, M., Fort, A., Marder, S. R., J. Mater. Chem. 13, 825 (2003). (b) S. Barlow, S. R. Marder, Chem. Comm. 1555 (2000). (c) A. K.-Y. Jen, H. Ma, X. Wu, J. Wu, S. Liu, S. R. Marder, L. R. Dalton, C.-F. Shu, SPIE Proc. 3623, 112 (1999).Google Scholar
[4] Galvan-Gonzalez, A., Belfield, K. D., Stegeman, G. I., Canva, M., Marder, S. R., Staub, K., Levina, G., Twieg, R. J., J. Appl. Phys. 94, 756 (2003), and references therein.Google Scholar
[5] (a) Albert, I. D. L., Marks, T. J., Ratner, M. A., J. Am. Chem. Soc., 119, 3155 (1997). (b) I. D. L. Albert, T. J. Marks, M. A. Ratner, J. Am. Chem. Soc. 120, 11174(1998). (c) S. Keinan, E. Zojer, J.-L. Bredas, M. A. Ratner, T. J. Marks, Theochem 633(2-3), 227(2003).Google Scholar