Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T07:35:25.889Z Has data issue: false hasContentIssue false

Synthesis and Study of Carbon Nanotubes by the Spray Pyrolysis Method Using Different Carbon Sources.

Published online by Cambridge University Press:  03 March 2015

Beatriz Ortega Garcia
Affiliation:
Universidad Autónoma de Nuevo León (UANL), FCFM, Monterrey, N.L., México.
Oxana Kharissova
Affiliation:
Universidad Autónoma de Nuevo León (UANL), FCFM, Monterrey, N.L., México.
Francisco Servando Aguirre-Tostado
Affiliation:
Centro de Investigación en Materiales Avanzados (CIMAV), Monterrey, N.L., México.
Rasika Dias
Affiliation:
University of Texas at Arlington, Department of Chemistry and Biochemistry, Arlington, TX, USA
Get access

Abstract

According to the reports of Z.E. Horvath et al [1] and Liu Yun-quan et al [5], carbon nanotubes can be synthesized by spray pyrolysis from different carbon sources (n-pentane, n-hexane, n-heptane, cyclohexane, toluene and acrylonitrile) and several metallocene catalysts (ferrocene, cobaltocene and nickelocene). This paper describes two different existing methods for growth of carbon nanotubes and the influence of applied parameters (oven temperature, synthesis time, catalyst concentration, carrier gas flow and solution flow) on the CNT's morphology. Also, a possible influence of number of carbons in carbon sources and structures of their compounds (linear or aromatic) on properties of formed carbon nanotubes. Transmission Electron Microscopy (TEM), Infrared Spectroscopy (FTIR) and Raman spectroscopy were applied for characterization of obtained materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Horváth, Z.E., Kertész, K., Pethő, L., Koós, A.A., Tapasztó, L., Vértesy, Z., Osváth, Z., Darabont, Al., Nemes-Incze, P., Sárközi, Zs, and Biró, L.P., Current Applied Physics 6, 135140 (2006).CrossRefGoogle Scholar
Mohlala, M. S., Liu, X.-Y., and Coville, N. J., Journal of Organometallic Chemistry 691, 47684772 (2006).CrossRefGoogle Scholar
Kunadian, I., Andrews, R., Qian, D., and Mengüç, M. P., Carbon 47,384395 (2009).CrossRefGoogle Scholar
Singh, C.., Shaffer, M. S.P., and Windle, A. H., Carbon 41, 359368 (2003).CrossRefGoogle Scholar
Martin-Gullon, I., Vera, J., Conesa, J. A., González, J. L., and Merino, C., Carbon 44, 15721580 (2006).CrossRefGoogle Scholar
Alonso-Nuñez, G., Valenzuela-Muñiz, A.M., Paraguay-Delgado, F., Aguilar, A., and Verde, Y., Optical Materials 29, 134139 (2006).CrossRefGoogle Scholar
Yun-quan, L., Xiao-hua, C., Zhi, Y., Yu-xing, P., and Bin, Y., Trans. Nonferrous Met. Soc. China 20, 10121016 (2010).Google Scholar
Wu, X., Tao, Y., Lu, Y., Dong, L., and Hu, Z., Diamond & Related Materials 15, 164170 (2006).CrossRefGoogle Scholar
Flahaut, E., Laurent, Ch., and Peigney, A., Carbon 43, 375383 (2005).CrossRefGoogle Scholar
Edwards, E.R., Antunes, E.F., Botelho, E.C., Baldan, M.R., and Corat, E.J., Applied Surface Science 258, 641648 (2011).CrossRefGoogle Scholar
Feng, J.-M., Li, Y.-L., Hou, F., and Zhong, X.-H., Materials Science and Engineering A 473, 238243 (2008).CrossRefGoogle Scholar
Liu, B.C., Lee, T.J., Jung, S.I., Park, C.Y., Choa, Y.H., and Lee, C.J., Carbon 43, 13411346 (2005).CrossRefGoogle Scholar