Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T02:48:53.197Z Has data issue: false hasContentIssue false

Synthesis and size control of Si nanocrystals by SiO/SiO2 superlattices and Er doping

Published online by Cambridge University Press:  11 February 2011

J. Heitmann
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
D. Kovalev
Affiliation:
Technische Universität München, Physik Department E16, D-85747 Garching, Germany
M. Schmidt
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
L.X. Yi
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
R. Scholz
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
F. Eichhorn
Affiliation:
Forschungszentrum Rossendorf, Institut für Ionenstrahlphysik und Materialforschung, PO Box 510119, 01314 Dresden, Germany
M. Zacharias
Affiliation:
Max-Planck-Institut für Mikrostrukturphysik, Weinberg 2, 06120 Halle, Germany
Get access

Abstract

The synthesis of nc-Si by reactive evaporation of SiO and subsequent thermal induced phase separation is reported. The size control of nc-Si is realized by evaporation of SiO/SiO2 superlattices. By this method an independent control of crystal size and density is possible. The phase separation of SiO into SiO2 and nc-Si in the limit of ultrathin layers is investigated. Different steps of this phase separation are characterized by photoluminescence, infrared absorption and transmission electron microscopy measurements. The strong room temperature luminescence of nc-Si shows a strong blueshift of the photoluminescence signal from 850 to 750 nm with decreasing crystal size. Several size dependent properties of this luminescence signal, like decreasing radiative lifetime and increasing no-phonon transition properties with decreasing crystal size are in good agreement with the quantum confinement model. Er doping of the nc-Si shows an enhancement of the Er luminescence at 1.54 μm by a factor of 5000 compared to doped SiO2 layers. The decreasing transfer time for the nc-Si to Er transition with decreasing crystal size can be understood as additional proof of increasing recombination probability within the nc-Si for decreasing crystal size.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Canham, L. T.. Appl. Phys. Lett., 57:1046, 1990.Google Scholar
Lehmann, V. and Gösele, U.. Appl. Phys. Lett., 58:856, 1991.Google Scholar
Kanemitsu, Y.. Phys. Rev. B, 49:16845, 1994.Google Scholar
[4] Shimizu-Iwayama, T., Hole, D.E., and Townsend, P.D.. Nucl. Instr. and Meth. B, 148:980, 1999.Google Scholar
[5] Ghislotti, G., Nielsen, B., Asoka-Kumar, P., Lynn, K.G., Gambhir, A., Di Mauro, L.F., and Bottani, C.E.. J. Appl. Phys., 79:8660, 1996.Google Scholar
[6] Brongersma, M. L., Polman, A., Min, K. S., Boer, E., Tambo, T., and Atwater, H. A.. Appl. Phys. Lett., 72:2577, 1998.Google Scholar
[7] Shimizu Iwayama, T., Hole, D.E., and Boyd, I.W.. J. Phys.: Condens. Matter, 11:6595, 1999.Google Scholar
[8] Zhu, M., Han, Y., Wehrspohn, R. B., Godet, C., Etemadi, R., and Ballutaud, D.. J. Appl. Phys., 83:5386, 1998.Google Scholar
[9] Wu, X., Bittner, A.M., Kern, K., Eggs, C., and Veprek, S.. Appl. Phys. Lett., 77:645, 2000.Google Scholar
[10] Hayashi, S. and Yamamoto, K.. J. of Luminescence, 70:352, 1996.Google Scholar
[11] Kahler, U. and Hofmeister, H.. Optical Materials, 17:83, 2001.Google Scholar
[12] Ehbrecht, M. and Huisken, F.. Phys. Rev. B, 59:2975, 1999.Google Scholar
[13] John, J. St., Coffer, J. L., Chen, Y., and Pinizzotto, R. F.. J. Am. Chem. Soc., 121:1888, 1999.Google Scholar
[14] Hirano, Y., Sato, F., Saito, N., Abe, M., Miyazaki, S., and Hirose, M.. J. of Non-Crystal. Sol., 266:1004, 2000.Google Scholar
[15] Zacharias, M., Heitmann, J., Scholz, R., Kahler, U., Schmidt, M., and Bläsing, J.. Appl. Phys. Lett., 80:661, 2002.Google Scholar
[16] Yi, L.Y., Heitmann, J., Schmidt, M., Scholz, R., and Zacharias, M.. Appl. Phys. Lett., 81:4248, 2002.Google Scholar
[17] Heitmann, J., Schmidt, M., Scholz, R., and Zacharias, M.. J. of Non-Crystal. Sol., 299:1075, 2002.Google Scholar
[18] Fujii, M., Yoshida, M., Kanzawa, Y., Hayashi, S., and Yamamoto, K.. Appl. Phys. Lett., 71:1198, 1997.Google Scholar
[19] Kik, P. G. and Polman, A.. J. Appl. Phys., 88:1992, 2000.Google Scholar
[20] Tsu, D. V., Lucovsky, G., and Davidson, B. N.. Phys. Rev. B, 40:1795, 1989.Google Scholar
[21] Heitmann, J., Kovalev, D., Eichhorn, F., Yi, L., and Zacharias, M.. J. Appl. Phys., submitted for publication.Google Scholar
[22] Kovalev, D., Heckler, H., Ben-Chorin, M., Polisski, G., Schwartzkopff, M., and Koch, F.. Phys. Rev. Lett., 81:2803, 1998.Google Scholar
[23] Zacharias, M., Dimova-Malinovska, D., and Stutzmann, M.. Philosphical Magazine B, 73:799, 1996.Google Scholar
[24] Belot, V., Corriu, R. J. P., Leclerq, D., Lefèvre, P., Mutin, P. H., and Vioux, A.. J. Non-Cryst. Solids, 127:207, 1991.Google Scholar
[25] Lin, S.Y.. J. Non-Cryst. Solids, 266–269:850, 2000.Google Scholar
[26] Rinnert, H., Vergnat, M., Marchal, G., and Bruneau, A.. J. Luminescence, 80:445, 1999.Google Scholar
[27] Jeong, J. Y., Im, S., Oh. M. S., , Kim, H. B., Chae, K. H., Whang, C. N., and Song, J. H.. J. Luminescence, 80:285, 1999.Google Scholar
[28] Stolze, F., Zacharias, M., Schippel, S., and Garke, B.. Solid State Commun., 87:805, 1993.Google Scholar
[29] Liu, N. N., Sun, J. M., Pan, S. H., Chen, Z. H., Wang, R. P., Shi, W. S., and Wang, X. G.. Superlattices and Microstructure, 28:157, 2000.Google Scholar
[30] Furukawa, K., Liu, Y., Nakashima, H., Gao, D., Uchino, K., Muraoka, K., and Tsuzuki, H.. J. Appl. Phys., 72:725, 1998.Google Scholar
[31] Kanzawa, Y, Hayashi, S, and Yamamoto, K. J. Phys.: Condens. Matter, 8:4823, 1996.Google Scholar
[32] Delerue, C., Allan, G., and Lannoo, M.. Phys. Rev. B, 48:11024, 1993.Google Scholar
[33] Proot, J. P., Delerue, C., and Allan, G.. Appl. Phys. Lett., 61:1948, 1992.Google Scholar
[34] Ledoux, G., Guillois, O., Porterat, D., Reynaud, C., Huisken, F., Kohn, B., and Paillard, V.. Phys. Rev. B, 62:159421, 2000.Google Scholar
[35] Hybertsen, M. S.. Phys. Rev. Lett., 37:1514, 1994.Google Scholar
[36] Watanabe, K., Fujii, M., and Hayashi, S.. J. Appl. Phys., 90:4761, 2001.Google Scholar