Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-12-01T03:29:31.130Z Has data issue: false hasContentIssue false

The Synthesis and Self-Assembly Studies of Two Bioactive BMP-7 Short Peptides Modified Rosette Nanotubes for Bone Tissue Engineering

Published online by Cambridge University Press:  14 March 2011

Alaaeddin Alsbaiee
Affiliation:
National Institute for Nanotechnology, Edmonton, T6G 2M9, Canada. Department of Chemistry, University of Alberta, Edmonton, T6G 2M9, Canada.
Mounir El Bakkari
Affiliation:
National Institute for Nanotechnology, Edmonton, T6G 2M9, Canada. Department of Chemistry, University of Alberta, Edmonton, T6G 2M9, Canada.
Hicham Fenniri*
Affiliation:
National Institute for Nanotechnology, Edmonton, T6G 2M9, Canada. Department of Chemistry, University of Alberta, Edmonton, T6G 2M9, Canada.
*
Get access

Abstract

Bone fractures are one of the most common bone complications. In more severe cases, bone fixation is accomplished using titanium (Ti) implant materials. Unfortunately, the need for revision surgery often arises due to implant loosening and/or deterioration of the implant/bone interface. Rosette nanotubes (RNTs) are a class of self-assembled organic materials obtained through the self-assembly of a guanine-cytosine hybrid base (G∧C motif). These organic materials have been found to increase osteoblast (bone forming cells) adhesion and hydroxyapatite deposition (bone regeneration) on titanium implants as well as on engineered hydrogels. In order to increase the bioactivity of RNTs to enhance bone cell function on Ti implants, two RNT motifs functionalized with different bioactive deca-peptides (A, B) chosen from the knuckle region of bone morphogenic proteins-7 (BMP-7) were synthesized. Their self-assembly process was investigated in water using UV-Vis and SEM techniques.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Breme, J., Steinhauser, E., and Paulus, G.. Biomaterials. 9, 310 (1988).Google Scholar
2. Balazic, M., Kopac, J., Jackson, J. M., and Ahmed, W.. Int. J. Nano Biomater. 1, 3 (2007).Google Scholar
3. American Academy of Orthopedic Surgeons (AAOS). Online: http://www.aaos.org/ Google Scholar
4. Geetha, M., Singh, A.K., Asokamani, R., Gogia, A.K.. Pro. Mater. Sci. 54, 397 (2009).Google Scholar
5. Lise, D. J., et al. Pharmacol. Res, 25(10), 2357 (2008).Google Scholar
6. Zhang, L. and Webster, T. J.. Nano Today. 4, 66.Google Scholar
7. Zhang, L., Sirivisoot, S., Balasundaram, G. and Webster, T. J.. 2008 Nanoengineering for bone tissue engineering Micro and Nanoengineering of The Cell Microenvironment: Technologies and Applications ed Khademhosseini, A., Borenstein, J., Toner, M. and Takayama, S. (Norwood: Artech House Publishers) pp 431–60.Google Scholar
8. Webster, T.J. 2001 Nanophaseceramics: the future orthopedic and dental implant material Advances in Chemical Engineering ed Ying, J. Y (New York: Academic) pp 125–66.Google Scholar
9.(a) Solheim, E.. Int. Orthop. 22, 410 (1998). (b) S. D. Cook, G. C. Baffes, M. W. Wolfe, T. K. Sampath, and D. C. Rueger. Clin. Orthop. Relat Res. 301, 302 (1994). (c) M. Lind, S. Overgaard, K. Soballe, T. Nguyen, B. Ongpipattanakul, and C. Bunger. J. Orthop. Res. 14, 343 (1996). Google Scholar
10. Chen, Y. and Webster, T. J.. J. Biomed. Mater. Res, Part A, 91A(1), 296 (2009).Google Scholar
11.(a) Fenniri, H., Mathivanan, P., Vidale, K. L., Sherman, D. M., Hallenga, K., Wood, K. V., and Stowell, J. G.. J. Am. Chem. Soc. 123, 3854 (2001). (b) H. Fenniri, B. L. Deng, and A. E. Ribbe. J. Am. Chem. Sco. 124, 11064 (2002). (c) H. Fenniri, B. L Deng, E. R. Alexander, K. Hallenga, J. Jacob, and P. Thiyagarajan. PNAS, 99, 6487 (2002).Google Scholar
12.(a) Chun, A. L., Moralez, J. G., Fenniri, H. and Webster, T. J.. Nanotechnology 15, S234 (2004). (b) A. L. Chuna, J. G. Moralezb, T. J. Webster, H. Fenniri. Biomaterials 26, 7304 (2005). (c) L. Z. Yupeng, J. Rodriguez, H. Fenniri, and T. J. Webster. Int. J. Nanomed. 3(3), 323 (2008). Google Scholar
13. Zhanga, L., Rakotondradany, F., Myles, A. J., Fenniri, H., Webster, T. J.. Biomaterials. 30, 1309 (2009).Google Scholar
14. Journeay, W. S., Suri, S. S., Moralez, J. G., Fenniri, H., and Singh, B.. Int. J. Nanomed. 3(3), 373 (2008).Google Scholar