No CrossRef data available.
Article contents
Synthesis and Characterization of Highly Transparent Sol-Gel Glass for Photovoltaic Applications
Published online by Cambridge University Press: 15 March 2011
Abstract
Room temperature sol-gel synthesis and optical characterization of highly transparent silica glass for photovoltaic (PV) applications is presented in this paper. Tetraethyl orthosilicate (TEOS), Ethanol, Hydrochloric acid (HCl) and deionized water were used as precursors in the volumetric ratio of 4:4.3:0.1:3.2 ml. Silica glass of thickness in the range of 0.5-1 cm were obtained with an average transmittance of 93% and absorption coefficient (α) of 0.08 cm−1 in a wide wavelength window of 350-1100 nm. Application of the developed sol-gel silica glass on solar ray concentration, anti-reflective coating (ARC) and effect of surface passivation on silicon wafers were examined. Carrier lifetime of the sol-gel silica passivated silicon substrate was 16 s and the calculated surface recombination velocity of the was 2200 cm/sec. Very low value of α, high transparency in a wide spectral window and effective surface passivation on silicon suggest that sol-gel processed silica glass can be a potential cost effective candidate for different PV applications.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2009