Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T13:17:15.808Z Has data issue: false hasContentIssue false

Synthesis and characterization of functionalized nano magnetite with phthalocyanines for use in photodynamic therapy

Published online by Cambridge University Press:  14 April 2016

M.A. Balcázar-Pérez
Affiliation:
División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto, Mexico.
G. Ramírez-García
Affiliation:
División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto, Mexico.
S. Gutiérrez
Affiliation:
División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto, Mexico.
R. Galindo
Affiliation:
División de Ciencias Naturales y Exactas, Campus Guanajuato, Universidad de Guanajuato, Cerro de la Venada s/n, Pueblito de Rocha, C.P. 36040 Guanajuato, Gto, Mexico. Consejo Nacional de Ciencia y Tecnología, Av. Insurgentes Sur 1582, Benito Juárez, Crédito Constructor, C.P 03940 Ciudad de México, D.F.
Get access

Abstract

Magnetic nanoparticles (MNPs) are a class of materials that can be manipulated under the influence of an external magnetic field. Thanks to the ability of the MNPs to be guided by an external magnetic field that is like "action at a distance", combined with their low cytotoxicity and the intrinsic penetrability of magnetic fields into human tissue, opens up many applications involving the transport and/or immobilization of biological entities [1, 2].

This work is focused on the synthesis of magnetite nanoparticles by varied methods, their functionalization with nickel tetrasulfonated phthalocyanine, and the corresponding physicochemical characterization and colloidal stability studies in biologically compatible media. The in vitro production of singlet oxygen by these nanoparticles through photochemical stimulation in ultraviolet and visible region was evaluated, resulting in 4.5 and 4 µM respectly to magnetite synthetized in the group. The increase reactive oxygen species concentration in the cellular environment can result in modification and damage of cellular components, and potentially, cell death and necrosis. Therefore, these materials offer the promise of revolutionary tools for photodynamic therapy and hyperthermia, which are attractive strategies for cancer therapy without systemic toxicity.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Pankhurts, Q. A., Connolly, J., Jones, S. K., Dobson, J.., J. Phys. D: Appl. Phys. 36 (2003) R167R181.10.1088/0022-3727/36/13/201CrossRefGoogle Scholar
Neuberger, T., Schopf, B., Hofmann, H., Hofmann, M., Von Rechenberg, B., Magn, J.. Magn. Mater., 293 (2005) 483496.10.1016/j.jmmm.2005.01.064CrossRefGoogle Scholar
Maldiney, T., et al. ., Effect of Core Diameter, Surface Coating, and PEG Chain Length on the Biodistribution of Persistent Luminescence Nanoparticles in Mice. Acs Nano, 2011. 5(2): p. 854862 10.1021/nn101937hCrossRefGoogle ScholarPubMed
Maldiney, T., et al. ., In Vitro Targeting of Avidin-Expressing Glioma Cells with Biotinylated Persistent Luminescence Nanoparticles. Bioconjugate Chemistry, 2012. 23(3): p. 472478.10.1021/bc200510zCrossRefGoogle ScholarPubMed
Durdureanu-Angheluta, A., et al. ., Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface. Journal of Magnetism and Magnetic Materials, 2012. 324(9): p. 16791689 10.1016/j.jmmm.2011.11.062CrossRefGoogle Scholar
Sundar, S., Mariappan, R., and Piraman, S., Synthesis and characterization of amine modified magnetite nanoparticles as carriers of curcumin-anticancer drug. Powder Technology, 2014. 266(0): p. 321328.10.1016/j.powtec.2014.06.033CrossRefGoogle Scholar
Javid, A., et al. ., Biocompatible APTES-PEG modified magnetite nanoparticles: effective carriers of antineoplastic agents to ovarian cancer. Appl Biochem Biotechnol, 2014. 173(1): p. 3654 10.1007/s12010-014-0740-6CrossRefGoogle ScholarPubMed
Gu, H., et al. ., Synthesis and cellular uptake of porphyrin decorated iron oxide nanoparticles-a potential candidate for bimodal anticancer therapy. Chemical Communications, 2005(34): p. 42704272.10.1039/b507779fCrossRefGoogle ScholarPubMed
Tada, D.B., et al. ., Methylene blue-containing silica-coated magnetic particles: a potential magnetic carrier for photodynamic therapy. Langmuir, 2007. 23(15): p. 8194–910.1021/la700883yCrossRefGoogle ScholarPubMed
Lai, C.W., et al. ., Iridium-complex-functionalized Fe3O4/SiO2 core/shell nanoparticles: a facile three-in-one system in magnetic resonance imaging, luminescence imaging, and photodynamic therapy. Small, 2008. 4(2): p. 218–24.10.1002/smll.200700283CrossRefGoogle ScholarPubMed
Bhana, S., et al. ., Near Infrared-absorbing Gold Nanopopcorns with Iron Oxide Cluster Core for Magnetically Amplified Photothermal and Photodynamic Cancer Therapy. ACS Appl Mater Interfaces, 2015.10.1021/acsami.5b02741CrossRefGoogle ScholarPubMed
Dolmans, D.E.J.G.J., Fukumura, D., and Jain, R.K., Photodynamic therapy for cancer . Nat Rev Cancer, 2003. 3(5): p. 380387.10.1038/nrc1071CrossRefGoogle ScholarPubMed
Wilson, B.C., Photodynamic therapy for cancer: principles. Can J Gastroenterol, 2002. 16(6): p. 393–6.10.1155/2002/743109CrossRefGoogle ScholarPubMed
Souza, P. V., , D., et al. , Synthesis and Biological Activity of Porphyrins. Mini-Reviews in Organic Chemistry, 2013. 10(1): p. 97102.10.2174/1570193X11310010008CrossRefGoogle Scholar
Ethirajan, M., et al. ., The role of porphyrin chemistry in tumor imaging and photodynamic therapy. Chemical Society Reviews, 2011. 40(1): p. 340362.10.1039/B915149BCrossRefGoogle ScholarPubMed
Sternberg, E.D., Dolphin, D., and Brückner, C., Porphyrin-based photosensitizers for use in photodynamic therapy. Tetrahedron, 1998. 54(17): p. 41514202.10.1016/S0040-4020(98)00015-5CrossRefGoogle Scholar
Pushpan, S.K., et al. ., Porphyrins in photodynamic therapy - a search for ideal photosensitizers. Curr Med Chem Anticancer Agents, 2002. 2(2): p. 187207 10.2174/1568011023354137CrossRefGoogle ScholarPubMed
Josefsen, L.B. and Boyle, R.W., Unique diagnostic and therapeutic roles of porphyrins and phthalocyanines in photodynamic therapy, imaging and theranostics. Theranostics, 2012. 2(9): p. 916–66.10.7150/thno.4571CrossRefGoogle ScholarPubMed
Sekkat, N., et al. ., Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules, 2012. 17(1): p. 98144.10.3390/molecules17010098CrossRefGoogle Scholar
Tsai, M.-F., et al. ., Au Nanorod Design as Light-Absorber in the First and Second Biological Near-Infrared Windows for in Vivo Photothermal Therapy. ACS Nano, 2013. 7(6): p. 53305342.10.1021/nn401187cCrossRefGoogle ScholarPubMed
Macdonald, I.J. and Dougherty, T.J., Basic principles of photodynamic therapy. Journal of Porphyrins and Phthalocyanines, 2001. 5(2): p. 105129.10.1002/jpp.328CrossRefGoogle Scholar
Kochevar, I.E. and Redmond, R.W., Photosensitized production of singlet oxygen. Methods Enzymol, 2000. 319: p. 20–8.10.1016/S0076-6879(00)19004-4CrossRefGoogle ScholarPubMed
Kolarova, H., et al. ., Production of reactive oxygen species after photodynamic therapy by porphyrin sensitizers. Gen Physiol Biophys, 2008. 27(2): p. 101–5.Google ScholarPubMed
Huang, C.C., et al. ., Oxidative stress, calcium homeostasis, and altered gene expression in human lung epithelial cells exposed to ZnO nanoparticles. Toxicology in Vitro, 2010. 24(1): p. 4555.10.1016/j.tiv.2009.09.007CrossRefGoogle ScholarPubMed
Moreira, L.M., et al. ., Photodynamic Therapy: Porphyrins and Phthalocyanines as Photosensitizers. Australian Journal of Chemistry, 2008. 61(10): p. 741754.10.1071/CH08145CrossRefGoogle Scholar