Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T05:32:57.293Z Has data issue: false hasContentIssue false

Synthesis and Characterization Ag/CeO2 Nanocomposites

Published online by Cambridge University Press:  01 February 2011

Antonella Glisenti
Affiliation:
[email protected], Università degli studi di Padova, Scienze Chimiche, Padova, Italy
Andrea Frasson
Affiliation:
[email protected], Università degli studi di Padova, Scienze Chimiche, PADOVA, PD, Italy
Alessandro Galenda
Affiliation:
[email protected], Università degli studi di Padova, Scienze Chimiche, PADOVA, PD, Italy
Matteo Ferroni
Affiliation:
[email protected], Università degli studi di Brescia, Chimica e Fisica, BRESCIA, Italy
Isabella Concina
Affiliation:
[email protected], Università degli studi di Brescia, Chimica e Fisica, BRESCIA, Italy
Marta Maria Natile
Affiliation:
[email protected], Università degli studi di Padova, Scienze Chimiche, PADOVA, PD, Italy
Get access

Abstract

Two Ag/CeO2 nanocomposite samples were prepared by deposition-precipitation (Ag/Ce nominal atomic ratio = 0.03 and 0.12). XPS data suggest the possible presence of traces of Ce(III). Beside Ag (0), oxidized silver species are also revealed in the Ag/CeO2 sample with lower metal content. The deposition of metal increases surface hydroxylation and carbonatation. Methanol interacts molecularly and dissociatively with the samples; oxidation products are observed from low temperature and depend on Ag content. Both the samples reveal a high activity in methanol complete oxidation; traces of partial oxidation products are observed in the sample with lower Ag content.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Zhang, H. Zhu, A. Wang, X. Wang, Y. C. Shi; Catal. Comm. 8 (2007) 612.Google Scholar
[2] Rojluechai, S. Chavadej, S. Schwank, J.W. Meeyoo, V.; Catal. Comm. 8 (2007) 57.Google Scholar
[3] Wang, J.-H. Liu, M.L. Lin, M.C.; Sol. State Ionics 177 (2006) 939.Google Scholar
[4] Amin, N.A.S. Tan, E.F. Manan, Z.A.; J. Catal. 222 (2004) 100.Google Scholar
[5] Sarode, P.R. Priolkar, K.R. Bera, P. Hegde, M.S. Emura, S. Kumashiro, R.; Mat. Res. Bull. 37 (2002) 1679.Google Scholar
[6] Carrette, L. Friedrich, K. A. Stimming, U. ChemPhysChem, 1 (2000) 162.Google Scholar
[7] Larmine, J. Dicks, A. Fuel Cell Systems Explained, Wiley, 2000.Google Scholar
[8] Imamura, S. Yamada, H. Utani, K.; Appl. Catal. A: Gen. 192 (2000) 221.Google Scholar
[9] Oliveira, A. L. De, Wolf, A. F. Schuth Catal Lett. 73 (2001) 157.Google Scholar