Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T05:12:43.675Z Has data issue: false hasContentIssue false

Synthesis and Characterisation of Polypyridine Derivatives: Towards Regioregular PPY

Published online by Cambridge University Press:  21 March 2011

Lockhart E. Horsburgh
Affiliation:
Organic Electroactive Materials Group, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom
Andrew P. Monkman
Affiliation:
Organic Electroactive Materials Group, Department of Physics, University of Durham, South Road, Durham, DH1 3LE, United Kingdom
Changsheng Wang
Affiliation:
Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, United Kingdom
Martin R. Bryce
Affiliation:
Department of Chemistry, University of Durham, South Road, Durham, DH1 3LE, United Kingdom
Get access

Abstract

Poly(2,5-pyridinediyl) was prepared from 2-bromo-5-iodopyridine, by a method which combines organomagnesium and organonickel chemistry, and leads to the regioselective formation of poly(2,5-pyridinediyl) (rPPY). The product of the reaction was compared to conventional poly(2,5-pyridinediyl) (PPY), thus enabling us to estimate that rPPY consists of 84±6% head-to-tail linkages. Photophysical properties of rPPY were also measured, and found to be generally similar to those of PPY, although there are some significant differences.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Law, C. W. Y., Wong, K. S., Yang, Z., Horsburgh, L. E. and Monkman, A. P.; Appl. Phys. Lett. 76, 1416 (2000); G. Greczynski, N. Johansson, M. Logdlund, L. A. A. Pettersson, W. R. Salaneck, L. E. Horsburgh, A. P. Monkman, D. A. dos Santos and J. L. Bredas; J. Chem. Phys. 114, 4243 (2001); A. P. Monkman, H. D. Burrows, L. J. Hartwell, L. E. Horsburgh, I. Hamblett and S. Navaratnam; Phys. Rev. Lett., 86, 1358 (2001).Google Scholar
2. Dailey, S., Halim, M., Rebourt, E., Horsburgh, L. E., Samuel, I. D. W., and Monkman, A. P., J. Phys. Condensed Matter 10, 5171 (1998); D. D. Gebler, Y. Z. Wang, J. W. Blatchford, S. W. Jessen, L-B. Lin, T. L. Gustafson, H. L. Wang, T. M. Swager, A. G. MacDiarmid and A. J. Epstein, J. Appl. Phys. 78, 4264 (1995).Google Scholar
3. Schiavon, G., Zotti, G., and Bontempelli, G., J. Electroanal Chem. 194, 327 (1985)Google Scholar
4. Yamamoto, T Maruyama, T., Zhou, Z., Ito, T., Fukuda, T., Yoneda, Y., Begum, F., Ikeda, T., Sasaki, S., Tazekoe, H., Fukuda, A. and Kubota, K., J. Am. Chem. Soc. 116, 4832 (1994).Google Scholar
5. Monkman, A. P., Halim, M., Dailey, S., Samuel, I. D. W., Sluch, M., and Horsburgh, L. E., SPIE Proceedings 3145, 208 (1997).Google Scholar
6. Blom, C., Ewald, M., Felder, M. and Schlingloff, G., Chem. Berichte 125, 1169 (1992).Google Scholar
7. Wang, C., Ellern, A., Khodorkovsky, V., Bernstein, J. and Becker, J. Y., J. Chem. Soc. Chem. Commun. 983 (1994).Google Scholar
8. McCullough, R. D., Lowe, R. D., Jayaraman, M. and Anderson, D. L., J. Org. Chem. 58, 904 (1993); R. D. McCullough and M. Jayaraman, J. Chem. Soc. Chem. Commun. 135 (1995).Google Scholar
9. Horsburgh, L. E., unpublished results.Google Scholar
10. Monkman, A. P., Halim, M., Dailey, S., Samuel, I. D. W., and Horsburgh, L.; Synth. Met. 101, 254 (1999).Google Scholar