Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-24T13:37:15.710Z Has data issue: false hasContentIssue false

Synchrotron Moessbauer Spectroscopy and Resistivity Studies of Iron Oxide Under High Pressure

Published online by Cambridge University Press:  26 February 2011

Viktor V. Struzhkin
Affiliation:
[email protected], Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Rd. N.W., Washington, DC, 20015, United States, 202 478 8952, 202 478 8901
Mikhail I. Eremets
Affiliation:
[email protected], Max Planck Institut für Chemie, Mainz, 55020, Germany
Ivan M. Eremets
Affiliation:
[email protected], Carnegie Institution of Washington, Washington, DC, 20015, United States
Jung-Fu Lin
Affiliation:
[email protected], Lawrence Livermore National Laboratory, Livermore, CA, 94550, United States
Wolfgang Sturhahn
Affiliation:
[email protected], Argonne National laboratory, Advanced Photon Source, Argonne, IL, 60439, United States
Jiyong Zhao
Affiliation:
[email protected], Argonne National laboratory, Advanced Photon Source, Argonne, IL, 60439, United States
Michael Y Hu
Affiliation:
[email protected], Argonne National Laboratory, HPCAT, Advanced Photon Source, Argonne, IL, 60439, United States
Get access

Abstract

The strong electron correlations play a crucial role in the formation of a variety of electronic and magnetic properties of the transition metal oxides. In strongly correlated electronic materials many theoretical predictions exist on pressure-induced insulator-metal transitions, which are followed by a collapse of localized magnetic moments and by structural phase transitions [1]. The high-pressure studies provide additional degree of freedom to control the structural, electronic, optical, and magnetic properties of transition metal oxides. With the development of the high-pressure diamond-anvil-cell technique the experimental studies of such transitions are now possible with the advanced synchrotron techniques. In our studies, the iron monooxide Fe0.94O was studied under high pressures up to 200 GPa in diamond anvil cells. The single crystals enriched with Fe57 isotopes have been prepared for nuclear resonance measurements. The results of synchrotron Mössbauer spectroscopy (nuclear forward scattering -NFS), and electro-resistivity measurements suggest a complicated scenario of magnetic interactions governed by band-broadening effects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cohen, R. E., Mazin, I. I. and Isaak, D. G., Science 275, 654 (1997).Google Scholar
2. Hemley, R. J. and Mao, H. K., Encyclopedia of Applied Physics, ed. Trigg, G. L., VCH Publishers, New York, 18 555 (1997).Google Scholar
3. Hemley, R. J., and Ashcroft, N. W., Physics Today 51, 26 (1998).Google Scholar
4. Mao, H.-K., Struzhkin, V. V., Hemley, R. J., and Kao, C.-C.. Eos Trans. Am. Geophys. Union, 78, F774 (1997).Google Scholar
5. Mao, H. K. et al. Science, 292, 914 (2001).Google Scholar
6. Fiquet, G., Badro, J., Guyot, F., Requardt, H., and Krisch, M.. Science, 291, 468 (2001).Google Scholar
7. Struzhkin, V. V., Hemley, R. J., Mao, H.-K., and A., Yu. Timofeev. Nature, 390, 382 (1997).Google Scholar
8. Eremets, M. I., Shimizu, K., Kobayashi, T. C, , K., and Amaya, . Science, 281,1333 (1998).Google Scholar
9. Zaanen, J., Sawatzky, G. A., Allen, J. W., Phys. Rev. Lett. 55, 419 (1985).Google Scholar
10. Tanabe, Y. and Sugano, S., J. Phys. Soc. Jap., 9, 753 and 766 (1954).Google Scholar
11. Efremov, D. V. and Khomskii, D. I., Phys. Rev. B 72, 012402 (2005).Google Scholar
12. Pasternak, M., et. al. Phys. Rev. Lett. 79, 5046 (1997).Google Scholar
13. Badro, J. et al. Phys. Rev. Lett., 83, 41014104 (1999).Google Scholar
14. Badro, J., , J., Fiquet, G., Guyot, F., Rueff, J.-P., Struzhkin, V. V., Vankó, G., and Monaco, G., Science 300, 789, 2003.Google Scholar
15. Lin, J. F., Struzhkin, V. V., Jacobsen, S. D., Hu, M. Y., Chow, P., Kung, J., Liu, H., Mao, H. K., and Hemley, R. J.,, Nature, 436, 377 (2005).Google Scholar
16. Lin, J. F., Gavriliuk, A. G., Struzhkin, V. V., Jacobsen, S. D., Sturhahn, W., Hu, M. Y., Chow, P. and Yoo, C. S., Phys. Rev. B., 73, 113107 (2006).Google Scholar
17. Goncharov, A. F., Struzhkin, V. V., Jacobsen, S. D., Science 312, 1205 (2006)Google Scholar
18. Eremets, M. I., Struzhkin, V. V., Mao, H. K., and Hemley, R. J., Science 293, 272, 2001.Google Scholar
19. Bassett, W. A.,Shen, A. H., Bucknum, M., and Chou, I. M., Rev. Sci. Instrum. 64, 2340, 1993.Google Scholar
20. Schmidt, S. C., Schiferl, D., Zinn, A. S., Ragan, D. D., and Moore, D. S., J. App. Phys. 69, 2793 (1991).Google Scholar
21. Akahama, Y. and Kawamura, H., J. App. Phys. 96, 3748 (2004).Google Scholar
22. Sturhahn, W., Hyperfine Interactions 125, 149 (2000), J. Phys.: Condens. Matter, 16, S497, 2004.Google Scholar
23. Rao, C. N. R., Cheetham, A. K., and Mahesh, R., Chem. Mater., 8, 2421 (1996).Google Scholar
24. Yoo, C. S. et. al., Phys. Rev. Lett., 94, 4101 (2005).Google Scholar
25. The details of the high-pressure low-temperature resistivity will be published elsewhere.Google Scholar
26. Isaak, D. G., Cohen, R. E., Mehl, M. J. and Singh, D. J., Phys. Rev. B 47, 7720 (1993).Google Scholar
27. Fang, Z., Terakura, K., Sawada, H., Miyazaki, T., and Solovyev, I., Phys. Rev. Lett., 81, 1027 (1998).Google Scholar
28. Fang, Z., Solovyev, I. V., Sawada, H., Terakura, K., Phys. Rev. B 59, 762 (1999).Google Scholar
29. Gramsch, S. A., Cohen, R. E., and Yu, S.. Savrasov, Amer. Miner. 88, 257 (2003).Google Scholar
30. Fei, Y., and Mao, H.-K., Science, 266, 16781680 (1994).Google Scholar
31. Mazin, I. I., Fei, Y., Downs, R., and Cohen, R., Am. Mineral. 83, 451 (1998).Google Scholar