Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T13:36:21.657Z Has data issue: false hasContentIssue false

Surface Modifications of Graphene-based Polymer Nanocomposites by Different Synthesis Techniques

Published online by Cambridge University Press:  23 August 2012

Burcu Saner Okan
Affiliation:
Nanotechnology Research and Application Center, Sabanci University, Orhanli, Tuzla, Istanbul 34956, Turkey
Selmiye Alkan Gürsel
Affiliation:
Faculty of Engineering and Natural Sciences, Materials Science and Engineering, Sabanci University, Orhanli, Tuzla, Istanbul 34956, Turkey
Yuda Yürüm
Affiliation:
Faculty of Engineering and Natural Sciences, Materials Science and Engineering, Sabanci University, Orhanli, Tuzla, Istanbul 34956, Turkey
Get access

Abstract

With the appropriate surface treatments, graphene sheets can be separated from graphite material and the layer-to-layer distance can be extended. In the present work, graphene nanosheets (GNS) were separated from graphite by an improved, safer and mild method including the steps of oxidation, thermal expansion, ultrasonic treatment and chemical reduction. For the production of advanced polymer nanocomposites, the distinguished properties of GNS were combined with the structural properties of conducting polypyrrole by the proposed simple and low-cost fabrication technique. The changes in surface morphologies and surface functional groups were estimated by controlling the polymer coating on graphite oxide (GO) sheets, expanded GO and GNS.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Stoller, M. D., Park, S. J., Zhu, Y. W., An, J. H., Ruoff, R. S., Nano Lett. 8, 3498 (2008).CrossRefGoogle Scholar
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubonos, S. V., et al. ., Science 306, 666 (2004).CrossRefGoogle Scholar
Brodie, B. C., Philos. Trans. R. Soc. London 149, 249 (1859).Google Scholar
Staudenmaier, L., Ber. Dtsch. Chem. Ges. 31, 1481 (1898).CrossRefGoogle Scholar
Hummers, W. S. and Offeman, R. E., J. Am. Chem. Soc. 80, 1339 (1958).CrossRefGoogle Scholar
McAllister, M. J., Li, J-L., Adamson, D. H., Schniepp, H. C., Abdala, A., Liu, J., Herrera- Alonso, M., Milius, D. L., Car, R., Prud’homme, R. K., Aksay, I. A., Chem. Mater. 19, 4396 (2007).CrossRefGoogle Scholar
Saner, B., Okyay, F., Yurum, Y., Fuel 89, 1903 (2010).CrossRefGoogle Scholar
Chen, G. H., Wu, C. L., Weng, W. G., Wu, D. J., Yan, W. L., Polymer 44, 1781 (2003).CrossRefGoogle Scholar
Saner, B., Dinc, F., Yurum, Y., Fuel 90, 2609 (2011).CrossRefGoogle Scholar
Saner Okan, B., Yurum, A., Gorgulu, N., Alkan Gursel, S., Yurum, Y., Ind. Eng. Chem. Res. 50, 12562 (2011).CrossRefGoogle Scholar
Vernitskaya, T. V. and Efimov, O. N., Russian Chemical Reviews 66, 443 (1997).CrossRefGoogle Scholar
Saner, B., Alkan Gürsel, S., Yurum, Y., Fuller. Nanotub. Car. N. in press (2011).Google Scholar
Gu, Z., Zhang, L., Li, C., J. Macromol. Sci. B. 48, 1093 (2009).CrossRefGoogle Scholar