Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T18:30:31.780Z Has data issue: false hasContentIssue false

Surface Characterization of Poly(acrylic acid) Grafted to Photo-oxidized Perfluorosulfonic Acid Membrane Used in Fuel Cells

Published online by Cambridge University Press:  01 February 2011

Alla Bailey
Affiliation:
[email protected], RIT, Chemistry, Center for Materials Science and Engineering, Rochester, New York, United States
Fei Lu
Affiliation:
[email protected], RIT, Chemistry, Center for Materials Science and Engineering, Rochester, New York, United States
Ameya Khot
Affiliation:
[email protected], RIT, Chemistry, Center for Materials Science and Engineering, Rochester, New York, United States
Shahida Hussain
Affiliation:
[email protected], RIT, Chemistry, Center for Materials Science and Engineering, Rochester, New York, United States
Kyle W. Rugg
Affiliation:
[email protected], RIT, Chemistry, Center for Materials Science and Engineering, Rochester, New York, United States
G. J. Leong
Affiliation:
[email protected], RIT, Chemistry, Center for Materials Science and Engineering, Rochester, New York, United States
Thomas Debies
Affiliation:
[email protected], Xerox Corporation, Analytical Services, Webster, New York, United States
Gerald Alan Takacs
Affiliation:
[email protected], RIT, Chemistry, Center for Materials Science and Engineering, Rochester, New York, United States
Get access

Abstract

Perfluorosulfonic acid membrane (Nafion®-117) was first surface modified with atmospheric pressure UV photo-oxidation or low-pressure vacuum UV photo-oxidation downstream from an Ar microwave plasma, and then graft polymerized with acrylic acid. X-ray photoelectron spectroscopy (XPS) was used to analyze the modified Nafion surface and poly(acrylic acid) grafted to the modified surface.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Press, R. J., Santhanam, K. S. V., Miri, M. J., Bailey, A. and Takacs, G. A., Introduction to Hydrogen Technology, John Wiley & Sons, Inc., Hoboken, New Jersey (2008).Google Scholar
2 Bae, B., Kim, D., Kim, H-J., Lim, T-H., Oh, I-H. and Ha, H. Y., J. Phys. Chem. B 110, 4240 (2006).Google Scholar
3 Ramdutt, D., Charles, C., Hudspeth, J., Ladewig, B., Gengenbach, T., Boswell, R., Dicks, A. and Brault, P., J. Power Sources 165, 41 (2007).Google Scholar
4 Dmitrenko, A.V., (Bailey, A.), Shadrina, N. E., Ivanchev, S. S., Ulinskaya, N.N. and Volkov, A.M., Chromatography, J., 520, 21 (1990).Google Scholar
5 Sener, U., Parekh, B., Entenberg, A., Debies, T. and Takacs, G. A., J. Adhesion Sci. Technol. 20, 319 (2006).Google Scholar
6 Desai, H., Xiaolu, L., Entenberg, A., Kahn, B., Egitto, F. D., Matienzo, L. J., Debies, T. and Takacs, G. A., in: Polymer Surface Modification: Relevance to Adhesion Adhesion, Mittal, K. L. (Ed.), Vol. 3, p. 139157, VSP, Utrecht (2004).Google Scholar
7 Dasilva, W., Entenberg, A., Kahn, B., Debies, T. and Takacs, G. A., J. Adhesion Sci. Technol. 18, 1465 (2004).Google Scholar
8 Dasilva, W., Entenberg, A., Kahn, B., Debies, T. and Takacs, G. A., J. Adhesion Sci. Technol. 20, 437 (2006).Google Scholar
9 Dmitrenko, A. V. (Bailey, A.), Mesh, A. M. and Agapitov, A. P., Vysokomol. Soed., A32, 523 (1990).Google Scholar
10 Beamson, G. and Briggs, D., High Resolution XPS of Organic Polymers, John Wiley & Sons, Chichester, West Sussex, England (1992).Google Scholar