Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-27T03:26:35.736Z Has data issue: false hasContentIssue false

Surface Anisotropy in Epitaxial FE(110)/MO(110) Multilayers

Published online by Cambridge University Press:  15 February 2011

R.M. Osgood III
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205
R.L. White
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205
B.M. Clemens
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, CA 94305-2205
Get access

Abstract

We have prepared epitaxial Fe(110)/Mo(110) multilayers by sputter deposition. These films exhibit a large uniaxial anisotropy and may be attractive as islanded in-plane recording media. The large uniaxial anisotropy is due to the intrinsic surface anisotropy of the Fe(110)/Mo(110) interface, which is of the same magnitude as the surface anistropy of the Fe(110)/W(110) interface but has a different sign (the surface anisotropy of the Fe(110)/Mo(110) interface prefers the [001] axis of magnetization). The magnetoelastic component of the anisotropy is not large. A novel magneto-optic technique was used to measure the transverse component of the magnetization and deduce information about the anisotropy and domain structure of the multilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. New, R. M. H., Pease, F. and White, R. L., Journal of Vac. Sci. and Tech., 12, 3196 (1994).Google Scholar
2. Elmers, H. J. and Gradmann, U., App. Phys. A., 51, 252 (1990).Google Scholar
3. Engel, B. N., England, C. D., Leeuwen, R. A. Van, Wiedmann, M. H., and Falco, C. M., 67, 1910 (1991).Google Scholar
4. Clemens, B. M., Osgood, R. M., Payne, A. P., Lairson, B. M., Brennan, S., White, R. L., and Nix, W. D., J. Mag. Magnetic Mats., 121, 37 (1993).Google Scholar
5. Osgood, R. M. III, Clemens, B. M., and White, R. L.. Mechanisms of Thin Film Evolution. (Mats. Res. Soc. Proc. 317, Pittsburgh, PA, 1994), edited by Yalisove, S. M., Thompson, C. V., and Eaglesham, D. J..Google Scholar
6. Badoz, J., Billardon, M., Canit, J. C., and Russel, M. F., J. Optics (Paris), 8, 373 (1977).Google Scholar
7. Osgood, R.M. III . PhD thesis, Stanford University, 1995.Google Scholar
8. Bain, J.A.. PhD thesis, Stanford University, 1993.Google Scholar
9. Nix, W. D., Metall. Trans. A, 20, 2217 (1989).Google Scholar
10. Miyajima, H., Sato, K., and Mizoguchi, T., Journal of App. Phys., 47, 4669 (1976).Google Scholar
11. Moog, E. R., Zak, J., Huberman, M. L., and Bader, S. D., Phys. Rev. B, 39, 9496 (1989).Google Scholar
12. Brubaker, M. E., Mattson, J. E., Sowers, C. H., and Bader, S. D., Appl. Phys. Letts., 58, 2306 (1991).Google Scholar