Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-24T18:42:09.918Z Has data issue: false hasContentIssue false

Supramolecular Self-Assembly Inside Living Mammalian Cells

Published online by Cambridge University Press:  22 January 2014

Yuan Gao
Affiliation:
Section on Tissue Biophysics and Biomimetics, NICHD, NIH Polymers Division, NIST NIST Center for Neutron Research Department of Chemistry, Brandeis University
Ryan Nieuwendaal
Affiliation:
Polymers Division, NIST
Boualem Hammouda
Affiliation:
NIST Center for Neutron Research
Cristina Berciu
Affiliation:
Department of Biology, Brandeis University;
Daniela Nicastro
Affiliation:
Department of Biology, Brandeis University;
Jack Douglas
Affiliation:
Polymers Division, NIST
Bing Xu
Affiliation:
Department of Chemistry, Brandeis University
Ferenc Horkay
Affiliation:
Section on Tissue Biophysics and Biomimetics, NICHD, NIH
Get access

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Estroff, L. A., Hamilton, A. D., Chem. Rev. 104, 1201 (2004).CrossRefGoogle Scholar
de Loos, M, Feringa, B. L., van Esch, J. H., Eur. J. Org. Chem. 3615 (2005).Google Scholar
Sangeetha, N. M., Maitra, U., Chem. Soc. Rev. 34, 821 (2005).CrossRefGoogle Scholar
Ulijn, R. V., Smith, A. M., Chem. Soc. Rev. 37, 664 (2008).CrossRefGoogle Scholar
Suzuki, M., Hanabusa, K., Chem. Soc. Rev. 38, 967 (2009).CrossRefGoogle Scholar
Silva, G. A., et al. . Science 303, 1352 (2004).CrossRefGoogle Scholar
Mart, R. J., Osborne, R. D., Stevens, M. M., Ulijn, R. V., Soft Matter 2, 822 (2006).CrossRefGoogle Scholar
Zhang, S. G., Nat. Biotechnol. 21, 1171 (2003).CrossRefGoogle Scholar
Cui, H. G., Webber, M. J., Stupp, S. I., Biopolymers 94, 1 (2010).CrossRefGoogle Scholar
Holmes, T. C., et al. . Proc. Natl. Acad. Sci. U. S. A. 97, 6728 (2000).CrossRefGoogle Scholar
Lutolf, M. P., et al. . Proc. Natl. Acad. Sci. U. S. A. 100, 5413 (2003).CrossRefGoogle Scholar
Yan, C. Q., Pochan, D. J., Chem. Soc. Rev. 39, 3528 (2010).CrossRefGoogle Scholar
Haines-Butterick, L., et al. . Proc. Natl. Acad. Sci. U. S. A. 104, 7791 (2007).CrossRefGoogle Scholar
Gao, Y., et al. . J. Am. Chem. Soc. 131, 13576 (2009).CrossRefGoogle Scholar
Zhao, F., Ma, M. L., Xu, B., Chem. Soc. Rev. 38, 883 (2009).CrossRefGoogle Scholar
Fletcher, D. A., Mullins, D., Nature, 463, 485 (2008).CrossRefGoogle Scholar
Spillantini, M. G., Crowther, R. A., Jakes, R., Hasegawa, M., Goedert, M., Proc. Natl. Acad. Sci. U. S. A. 95, 6469 (1998).CrossRefGoogle Scholar
Pollard, T. D., Cooper, J. A., Science, 326, 1208 (2009).CrossRefGoogle Scholar
Perng, M. D., Cairns, L., van den Ijssel, P., Prescott, A., Hutcheson, A. M., Quinlan, R. A., J. Cell Sci. 112, 2099 (1999).Google Scholar
Rubinsztein, D. C., Nature, 443, 780 (2006).CrossRefGoogle Scholar
Yang, Z., Liang, G., Guo, Z., Xu, B., Angew. Chem. Int. Ed. 46, 8216 (2007).CrossRefGoogle Scholar
Yang, Z. M., Xu, K. M., Guo, Z. F., Guo, Z. H., Xu, B., Adv. Mater. 19, 3152 (2007).CrossRefGoogle Scholar
Ma, M. L., Kuang, Y., Gao, Y., Zhang, Y., Gao, P., Xu, B., J. Am. Chem. Soc. 132, 2719 (2010).CrossRefGoogle Scholar
Terech, P., Weiss, R. G., Chem. Rev. 97, 3133 (1997).CrossRefGoogle Scholar
Yang, Z., Liang, G., Xu, B., Acc. Chem. Res. 41, 315 (2008).CrossRefGoogle Scholar
Humphries, G. M. K., Lovejoy, J. P., Biophys. J. 42, 307(1983).CrossRefGoogle Scholar
Abel, E., Maguire, G. E. M., Murillo, O., Suzuki, I., De Wall, S. L., Gokel, G. W., J. Am. Chem. Soc. 121, 9043 (1999).CrossRefGoogle Scholar
Gao, Y., Shi, J. F., Yuan, D., Xu, B., Nat. Commun. 3, 1033 (2012).CrossRefGoogle Scholar
Dopp, E., et al. . Drug Metab. Dispos. 36, 971 (2008).CrossRefGoogle Scholar
Frangioni, J. V., Beahm, P. H., Shifrin, V., Jost, C. A., Neel, B. G., Cell 68, 545 (1992).CrossRefGoogle Scholar
Tonks, N. K., Diltz, C. D., Fischer, E. H., J. Biol. Chem. 263, 6722 (1988).Google Scholar
Sameiro, M., Goncalves, T., Chem. Rev. 109, 190 (2009).Google Scholar
Zimmer, M., Chem. Rev. 102, 759 (2002).CrossRefGoogle Scholar
Medintz, I. L., Uyeda, H. T., Goldman, E. R., Mattoussi, H., Nat. Mater. 4, 435 (2005).CrossRefGoogle Scholar
Resch-Genger, U., Grabolle, M., Cavaliere-Jaricot, S., Nitschke, R., Nann, T., Nat. Methods 5, 763 (2008).CrossRefGoogle Scholar
Wang, K., Rodgers, M. E., Toptygin, D., Munsen, V. A., Brand, L., Biochemistry 37, 41 (1998).CrossRefGoogle Scholar
Taniguchi, Y., Choi, P. J., Li, G. W., Chen, H. Y., Babu, M., Hearn, J., Emili, A., Xie, X. S., Science 329, 533 (2010).CrossRefGoogle Scholar
Freudiger, C. W., et al. . Science 322, 1857 (2008).CrossRefGoogle Scholar
Channon, K. J., Devlin, G. L., MacPhee, C. E., J. Am. Chem. Soc. 131, 12520 (2009).CrossRefGoogle Scholar
Chen, L., Revel, S., Morris, K., Adams, D. J., Chem. Commun. 46, 4267 (2010).CrossRefGoogle Scholar
Gao, Y., Berciu, C., Kuang, Y., Shi, J. F., Nicastro, D., Xu, B., ACS Nano (2013) DOI:10.1021/nn403664n Google Scholar
Liang, G. L., Ren, H. J., Rao, J. H., Nat. Chem. 2, 54 (2009).CrossRefGoogle Scholar
Huc, I., Lehn, J. M., Proc. Natl. Acad. Sci. U. S. A. 94, 2106 (1997).CrossRefGoogle Scholar
Lehn, J. M., Angew. Chem. Int. Ed. 29, 1304 (1990).CrossRefGoogle Scholar
Whitesides, G. M., Mathias, J. P., Seto, C. T., Science 254, 1312 (1991).CrossRefGoogle Scholar
Lee, Y., Ishii, T., Kim, H. J., Nishiyama, N., Hayakawa, Y., Itaka, K., Kataoka, K., Angew. Chem. Int. Ed. 49, 2552 (2010).CrossRefGoogle Scholar