Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T06:57:35.919Z Has data issue: false hasContentIssue false

A superlattice approach to the synthesis of ferroelectric Strontium Bismuth Tantalate thin films using liquid-injection-MOCVD

Published online by Cambridge University Press:  26 February 2011

Richard Potter
Affiliation:
[email protected], University of Liverpool, Engineering, George Holt Building,, Liverpool, Merseyside, L69 3BX, United Kingdom
Ahmed Awad
Affiliation:
[email protected], University of Liverpool, Engineering, United Kingdom
Paul R. Chalker
Affiliation:
[email protected], University of Liverpool, Engineering, United Kingdom
Peng Wang
Affiliation:
[email protected], University of Liverpool, Engineering, United Kingdom
Anthony C. Jones
Affiliation:
[email protected], Epichem Ltd, United Kingdom
Timothy C.Q. Noakes
Affiliation:
[email protected], CCLRC Daresbury Laboratory, MEIS Facility, United Kingdom
Paul Bailey
Affiliation:
[email protected], CCLRC Daresbury Laboratory, MEIS Facility, United Kingdom
Get access

Abstract

The synthesis of SrBi2Ta2O9 (SBT) thin films has been investigated using a superlattice approach. Thin films were deposited on silicon by independent injection of each source to produce Bi2O3/SrTa2O6 superlattices. The effects of post-deposition annealing have been investigated using high-resolution TEM and medium energy ion scattering (MEIS) to depth profile the superlattices. X-ray diffraction has also been used to characterize the conversion of the superlattices from distinct layers of Bi2O3 and SrTa2O6 into a polycrystalline layer of strontium bismuth tantalate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Paz de Arauja, C.A., Cuchiaro, J.D., McMillan, K.D., Scott, M.C., Scott, J.F., Nature 347, 627 (1995).Google Scholar
[2] Funakubo, H., Ishikawa, K., Watanabe, T., Mitsuya, M., Nukaga, N., Adv. Mater. Opt. Electron. 10, 193 (2000).Google Scholar
[3] Mihara, T, Yoshimori, H, Watanabe, H, de Araujo, CA Paz, Jpn. J. Appl. Phys., 34, 5233 (1995).Google Scholar
[4] Yang, PX, Zhou, NS, Zheng, LR, Lu, HX, Lin, CL, J. Phys. D, Appl. Phys., 30, 527 (1997).Google Scholar
[5] Li, T., Desu, S.B., Peng, C.H., Nagata, M., Appl Phys Lett., 68, 616 (1996).Google Scholar
[6] Funakubo, H, Nugaka, N, Ishikawa, K, Watanabe, T, Jpn J Appl Phys., 38, L199 (1999).Google Scholar
[7] Felten, F., Senateur, J.P., Weiss, F., Madar, R., Abrutius, A., J. Phys. IV, France, 5, C51079 (1995).Google Scholar
[8] Jones, A.C., Leedham, T.J., Wright, P.J., Crosbie, M.J., Lane, P.A., Williams, D.J. Fleeting, K.A., Otway, D.J., O'Brien, P., Chem. Vap. Deposition, 4, 46 (1998).Google Scholar
[9] Jones, A.C. and Chalker, P.R, J. Phys. D: Appl. Phys. 36, R80 (2003).Google Scholar
[10] Roeder, J.F., Hendrix, B.C., Hintermeier, F., Desrochers, D.A., Baum, T.H., Bhandari, G., Chappius, M., Van Buskirk, P.C., Dehm, C., Fritsch, E., Nagel, N., Wendt, H., Cerva, H., Honlein, W., Mazure, C., J. Eur. Ceram. Soc., 19, 1463. (1999).Google Scholar
[11] Isobe, C., Ami, T., Hironaka, K., Watanabe, K., Sugiyama, M., Nagel, N., Katori, K., Ikeda, Y., Gutleben, C.D., Tanaka, M., Yaamoto, H., Yagi, H., Integrated Ferroelectrics, 14, 95 (1997).Google Scholar
[12] Jones, A.C., Tobin, N.L., Marshall, P.A., Potter, R.J., Chalker, P.R., Bickley, J.F., Davies, H.O., Smith, L.M., Critchlow, G.W., J. Mater. Chem., 14 (5), 887 (2004).Google Scholar
[13] Potter, R.J., Marshall, P.A., Roberts, J.L., Jones, A.C., Chalker, P.R., Ritala, M., Vehkamäki, M., Williams, P.A., Davies, H.O., Tobin, N.L., Smith, L.M.. MRS Fall 2003, 784 Google Scholar
[14] Williams, P.A., Jones, A.C., Crosbie, M.J., Wright, P.J., Bickley, J.F., Steiner, A., Davies, H.O., Leedham, T.J., Critchlow, G.W., Chem. Vap. Depos., 7, 205 (2001).Google Scholar
[15] Amanuma, K., Hase, T., Miyasaka, Y., Mater. Res. Soc. Symp. Proc. 361, 21 (1995).Google Scholar
[16] Watanabe, H., Mihara, T., Yoshimori, H., Araujo, C.A., Jpn. J. Appl. Phys. 34, 5240 (1995).Google Scholar
[17] Chalker, P.R., Potter, R.J., Roberts, J.L., Jones, A.C., Smith, L.M., Schumacher, M., J. Crystal Growth, 272, (1-4), 778 (2004).Google Scholar
[18] Bailey, P., Noakes, T.C.Q., Woodruff, D.P., Surface Science, 426, 358 (1999).Google Scholar
[19] Watanabe, T., Funakubo, H., Jpn. J. Appl. Phys. 39, 5211 (2000).Google Scholar
[20] Ivanov, S.A., Tellgren, R., Rundlof, H., Orlov, V.G., Powder Diffr., 16, 227 (2001).Google Scholar
[21] Osada, M., Kakihana, M., Mitsuya, M., Watanabe, T., Funakubo, H., Jpn. J. Appl. Phys., 40, L891 (2001).Google Scholar
[22] Muller, C., Jacob, F., Gagou, Y., Elkaim, E., J. Appli. Cryst., 36, 880 (2003).Google Scholar
[23] Mayer, M., Proc. of the 15th International Conference on the Application of Accelerators in Research and Industry, Duggan, J. L. & Morgan, I.L. (eds.), AIP Conf. Proc., 475, 541 (1999).Google Scholar
[24] The United Kingdom Chemical Database Service”, Fletcher, D.A., McMeeking, R.F., Parkin, D., J. Chem. Inf. Comput. Sci., 36, 746 (1996).Google Scholar