Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-27T02:33:36.505Z Has data issue: false hasContentIssue false

Superhydrophobic Silicon Surfaces with Low Light Reflectivity

Published online by Cambridge University Press:  31 January 2011

Yonghao Xiu
Affiliation:
[email protected], Georgia Institute of Technology, Chemical and Biomolecular Engineering, 311 Ferst Drive, EST, Atlanta, Georgia, 30332, United States
Yan Liu
Affiliation:
[email protected], Georgia Institute of Technology, School of Polymer, Textile, Fiber Engineering, Atlanta, Georgia, United States
Dennis W. Hess
Affiliation:
[email protected], Georgia Institute of Technology, Chemical and Biomolecular Engineering, Atlanta, Georgia, United States
Chingping Wong
Affiliation:
[email protected], Georgia Institute of Technology, Atlanta, United States
Get access

Abstract

Creation of superhydrophobic self-cleaning surfaces is an important objective for a variety of applications. Indeed, numerous routes to generate superhydrophobic surfaces have been proposed. In this paper, a facile way of forming superhydrophobic surfaces is reported that uses Au assisted HF/H2O2 etching of silicon wafers. The Au layer was deposited onto a silicon wafer via e-beam evaporation. By controlling the evaporation and etching times, the surface roughness can be manipulated and superhydrophobic surfaces with reduced light reflection can be generated. Contact angles were measured with a CCD camera equipped goniometer; these values determined the water repellency. Light reflection on the as prepared black surfaces was measured to assess the efficiency for low cost solar cell applications. This approach offers a new way both to theoretically study the surface roughness effect and to investigate engineering applications of self-cleaning surfaces in solar cells, MEMS, anti-bacteria coating, and microfluidic devices.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Kolasinski, K. W. Current Opinion in Solid State & Materials Science, 9, 73 (2005).Google Scholar
2 Koynov, S. Brandt, M. S. Stutzmann, M. Applied Physics Letters, 88, 203 (2006).Google Scholar
3 Li, X. Bohn, P. W. Applied Physics Letters 77, 2572 (2000).Google Scholar
4 Zhang, F. Z. Zhao, L. L. Chen, H. Y. Xu, S. L. Evans, D. G. Duan, X. Angwe Chem Int Ed, 47, 2466 (2008).Google Scholar
5 Neinhuis, C. Barthlott, W. Ann. Bot. 79, 667 (1997).Google Scholar
6 Artus, G. R. J. Jung, S. Zimmermann, J. Gautschi, H. P. Marquardt, K. Seeger, S. Adv Mater, 18, 2758 (2006).Google Scholar
7 Jisr, R. M. Rmaile, H. H. Schlenoff, J. B. Angew Chem Int Ed, 44, 782 (2005).Google Scholar
8 Tung, P. H. Kuo, S. W. Jeong, K. U. Cheng, S. Z. D. Huang, C. F. Chang, F. C. Macromol Rapid Comm, 28, 271 (2007).Google Scholar
9 Ahuja, A. Taylor, J. A. Lifton, V. Sidorenko, A. A. Salamon, T. R. Lobaton, E. J. Kolodner, P., Krupenkin, T. N. Langmuir, 24, 9 (2008).Google Scholar
10 Baldacchini, T. Carey, J. E. Zhou, M. Mazur, E. Langmuir, 22, 4917 (2006).Google Scholar
11 Wang, M. F. Raghunathan, N. Ziaie, B. Langmuir, 23, 2300 (2007).Google Scholar
12 Extrand, C. W. Langmuir, 18, 7991 (2002).Google Scholar
13 Chen, W. Fadeev, A. Y. Hsueh, M. C. Oner, D. Youngblood, J. McCarthy, T.J. Langmuir, 15, 3395 (1999).Google Scholar
14 McHale, G. Shirtcliffe, N. J. Newton, M.I. Langmuir, 20, 10146 (2004).Google Scholar
16 Anantharaju, N. Panchagnula, M. V. Vedantam, S. Neti, S. Tatic-Lucic, S., Langmuir, 23 11673 (2007).Google Scholar
17 Oner, D. McCarthy, T. J. Langmuir, 16, 7777 (2000).Google Scholar
18 Cao, L. L. Price, T. P. Weiss, M. Gao, D. Langmyurm 24, 1640 (2008)Google Scholar
19 Koynov, S. Brandt, M. S. Stutzmann, M. Physica Status Solidi-Rapid Research Letters, 1, R53 (2007).Google Scholar
20 Green, M. A., Solar cells : operating principles, technology, and system applications, University of New South Wales, Kensington, NSW (1998).Google Scholar