Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T02:20:38.847Z Has data issue: false hasContentIssue false

Substrate effect on Dynamic Indentation Measurement of Biological Cell Properties

Published online by Cambridge University Press:  31 January 2011

Guoxin Cao
Affiliation:
[email protected], Univeristy of Nebraska-Lincoln, Engineering Mechanics, 317 Nebraska Hall, Lincoln, Nebraska, 68588, United States
Namas Chandra
Affiliation:
[email protected], University of Nebraska-Lincoln, Lincoln, Nebraska, United States
Get access

Abstract

Viscoelastic mechanical properties of biological cells are commonly measured using atomic force microscope (AFM) dynamic indentation method with spherical tips. Storage and loss modulii of cells are then computed from the indentation force-displacement response under dynamic loading conditions. It is shown in current numerical simulations that those modulii computed based on existing analysis can not reflect the true values due to the substrate effect. This effect can alter the indentation modulus by changing the geometric relations between the indentation displacement and the contact area. Typically, the cell modulii are significantly overestimated in the existing indentation analysis.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hansen, J. C., Lim, J. Y., Xu, L.-C., Siedlecki, C. A., Mauger, D. T. and Donahue, H. J., Journal of Biomechanics 40, 2865 (2006).10.1016/j.jbiomech.2007.03.018Google Scholar
2 Koay, E. J., Shieh, A. C. and Athanasiou, K. A., Journal of Biomechanical Engineering-Transactions of the Asme 125, 334 (2003).Google Scholar
3 Kuznetsova, T. G., Starodubtseva, M. N., Yegorenkov, N. I., Chizhik, S. A. and Zhdanov, R. I., Micron 38, 824 (2007).10.1016/j.micron.2007.06.011Google Scholar
4 Li, Q. S., Lee, G. Y. H., Ong, C. N. and Lim, C. T., Biochemical and Biophysical Research Communications 374, 609 (2008).10.1016/j.bbrc.2008.07.078Google Scholar
5 Lu, Y. B., Franze, K., Seifert, G., Steinhauser, C., Kirchhoff, F., Wolburg, H., Guck, J., Janmey, P., Wei, E. Q., Kas, J. and Reichenbach, A., Proceedings of the National Academy of Sciences of the United States of America 103, 17759 (2006).10.1073/pnas.0606150103Google Scholar
6 Mahaffy, R. E., Park, S., Gerde, E., Kas, J. and Shih, C. K., Biophysical Journal 86, 1777 (2004).10.1016/S0006-3495(04)74245-9Google Scholar
7 Mahaffy, R. E., Shih, C. K., MacKintosh, F. C. and Kas, J., Physical Review Letters 85, 880 (2000).10.1103/PhysRevLett.85.880Google Scholar
8 Ohashi, T., Ishii, Y., Ishikawa, Y., Matsumoto, T. and Sato, M., Bio-Medical Materials and Engineering 12, 319 (2002).Google Scholar
9 Lulevich, V., Zink, R., Chen, H.-Y., Liu, F.-T. and Liu, G.-y., Langmuir 22, 8151 (2006).10.1021/la060561pGoogle Scholar
10 Lee, E. H. and Radok, J. R. M., Journal of Applied Mechanics 27, 438 (1960).10.1115/1.3644020Google Scholar