Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-26T11:02:48.815Z Has data issue: false hasContentIssue false

Subcritical Crack Growth of Bioactive Glasses in Simulated Body Fluid

Published online by Cambridge University Press:  15 February 2011

D.R. Bloyer
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
J.M. Mcnaney
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 Dept. of Mat. Sci. and Min. Eng., University of California at Berkeley, Berkeley, CA 94720
A.P. Tomsia
Affiliation:
Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
Get access

Abstract

A new series of bioactive glasses have been prepared with thermal expansion coefficients that more closely match that of Ti-based implant alloys. It is proposed that these glasses be used as coatings on biological implants that would provide improved fixation between the implant and tissue. As glasses are subject to environmentally assisted crack growth, it is important to develop an understanding of the stress corrosion crack growth (SCCG) behavior of this new family of glasses; furthermore, it is equally important to determine the effect of bioactivity on the SCCG properties of these glasses. This report will present the progress to date in the study of the SCCG properties of these new bioactive glasses

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Hench, L. L., J. Am. Ceram. Soc., 81 (7) (1998), p. 1705.Google Scholar
2. Charles, R. J.: in Progress in Ceramic Science, Burke, J. E., Editor, Permagon Press, New York, 1961, p. 1.Google Scholar
3. Hillig, W. B.: in Mondern Aspects of the Vitreous State, MacKenzie, J. D., Editor, Butterworth, Inc., Washington, D.C., 1962, p. 152.Google Scholar
4. Wiederhom, S. M., J. Am. Ceram. Soc., 50 (8) (1967), p. 407.Google Scholar
5. Michalske, T. A. and Freiman, S. W., J. Am. Ceram. Soc., 66 (4) (1983), p. 284.Google Scholar
6. Krajewski, A., Ravaglioli, A., De Portu, G., and Visani, R., Am. Ceram. Bull., 64 (5) (1985), p. 679.Google Scholar
7. Hench, L. L., Splinter, R. J., Allen, W. C., and Greenlee, T. K., J. Biomed. Res. Symposium, 2 (1) (1971), p. 117.Google Scholar
8. Pazo, A., Saiz, E., and Tomsia, A. P., Acta mater., 46 (7) (1998), p. 2551.Google Scholar
9. Gomez-Vega, J. M., Saiz, E., and Tomsia, A. P., (1998), to be published.Google Scholar
10. Devesa, L., Pazo, A., Santos, C., Martinez, A., Guitdn, F., and Moya, J. S., Acta Mater., 46 (7) (1998), p. 2559.Google Scholar
11. Gomez-Vega, J. M., Saiz, E., and Tomsia, A. P., J. Biomed. Mater. Res., (1998), submitted.Google Scholar
12. Michalske, T. A. and Frechette, V. D., J. Am. Ceram. Soc., 63 (11-12) (1980), p. 603.Google Scholar
13. Wiederhom, S. M., Freiman, S. W., Fuller, E. R., and Simmons, C. J., J. Mater. Sci., 17 (1982), p. 3460.Google Scholar
14. Barry, C. and Nicholson, P. S., Adv. Ceram. Mat., 3 (2) (1988), p. 127.Google Scholar
15. Wiederhorn, S. M. and Bolz, L. H., J. Am. Ceram. Soc., 53 (10) (1970), p. 543.Google Scholar