Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T07:20:57.058Z Has data issue: false hasContentIssue false

Studying Motion of 〈100〉 Tilt Grain Boundaries Using Molecular Dynamics Simulation

Published online by Cambridge University Press:  19 August 2014

Shijing Lu
Affiliation:
Department of Material Science and Engineering, Raleigh, NC 27695-7907, U.S.A.
Donald W. Brenner
Affiliation:
Department of Material Science and Engineering, Raleigh, NC 27695-7907, U.S.A.
Get access

Abstract

In the study of grain boundary migration of metallic materials using molecular dynamics simulation (MDS), grain boundary mobilities and activation energies are often found to be different from experimentally observed values. To reconcile the discrepancies, tremendous effort has been made to replicate experiment conditions in MDS, e.g.as low a driving force as possible, near zero grain boundary velocity. In the present study, we propose an analytic method that removes effects from non-physical conditions such as high driving force or high temperature. The analytic model presumes that two types of rate limiting events coexist during grain boundary migration. Kinetics parameters, such as activation energies, of the rare events are different and therefore should be modeled separately. Activation energies from this model are closer to experiment than previously reported values. Further, by analyzing the evolution of atomic structures, these two types of rate limiting events correspond to shear coupled migration and grain boundary sliding mechanisms, respectively.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Janssens, K.G.F., Olmsted, D., a Holm, E., Foiles, S.M., Plimpton, S.J., and Derlet, P.M., Nat. Mater. 5, 124 (2006).10.1038/nmat1559CrossRefGoogle Scholar
Trautt, Z.T., Upmanyu, M., and Karma, A., Science 314, 632 (2006).10.1126/science.1131988CrossRefGoogle Scholar
Deng, C. and Schuh, C. a, Phys. Rev. Lett. 106, 045503 (2011).10.1103/PhysRevLett.106.045503CrossRefGoogle Scholar
Zhou, J. and Mohles, V., Acta Mater. 59, 5997 (2011).10.1016/j.actamat.2011.06.008CrossRefGoogle Scholar
Godiksen, R.B., Trautt, Z.T., Upmanyu, M., Schiøtz, J., Jensen, D.J., and Schmidt, S., Acta Mater. 55, 6383 (2007).10.1016/j.actamat.2007.07.055CrossRefGoogle Scholar
Schönfelder, B., Gottstein, G., and Shvindlerman, L.S., Metall. Mater. Trans. A 37, 1757 (2006).10.1007/s11661-006-0118-7CrossRefGoogle Scholar
Zhang, H., Upmanyu, M., and Srolovitz, D.J., Acta Mater. 53, 79 (2005).10.1016/j.actamat.2004.09.004CrossRefGoogle Scholar
Zhang, H., Mendelev, M.I., and Srolovitz, D.J., Acta Mater. 52, 2569 (2004).10.1016/j.actamat.2004.02.005CrossRefGoogle Scholar
Winning, M., Acta Mater. 51, 6465 (2003).10.1016/j.actamat.2003.06.001CrossRefGoogle Scholar
Winning, M. and Rollett, A.D., Acta Mater. 53, 2901 (2005).10.1016/j.actamat.2005.03.005CrossRefGoogle Scholar
Deng, C. and Schuh, C. a, Phys. Rev. B 84, 214102 (2011).10.1103/PhysRevB.84.214102CrossRefGoogle Scholar
Mishin, Y., Asta, M., and Li, J., Acta Mater. 58, 1117 (2010).10.1016/j.actamat.2009.10.049CrossRefGoogle Scholar
Mendelev, M.I., Deng, C., a Schuh, C., and Srolovitz, D.J., Model. Simul. Mater. Sci. Eng. 21, 045017 (2013).10.1088/0965-0393/21/4/045017CrossRefGoogle Scholar
Sheng, H., Kramer, M., Cadien, a., Fujita, T., and Chen, M., Phys. Rev. B 83, 1 (2011).10.1103/PhysRevB.83.134118CrossRefGoogle Scholar
Olmsted, D.L., Holm, E.A., and Foiles, S.M., Acta Mater. 57, 3704 (2009).10.1016/j.actamat.2009.04.015CrossRefGoogle Scholar
Valiev, R.Z., Kozlov, E.V., Ivanov, Y.F., Lian, J., Nazarov, A.A., and Baudelet, B., Acta Metall. Mater. 42, 2467 (1994).10.1016/0956-7151(94)90326-3CrossRefGoogle Scholar
Cahn, J.W., Mishin, Y., and Suzuki, A., Acta Mater. 54, 4953 (2006).10.1016/j.actamat.2006.08.004CrossRefGoogle Scholar
Kaur, I. and Gust, W., Handbook of Grain and Interphase Boundary Diffusion Data (Ziegler Press, 1989).Google Scholar