Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-27T02:55:14.076Z Has data issue: false hasContentIssue false

Study of Thermal Oxide Solid-State Reaction on GaAs Surfaces

Published online by Cambridge University Press:  25 February 2011

Z. Lu
Affiliation:
Microelectronics Sciences Laboratory, Columbia University, New York, NY 10027
D. Chen
Affiliation:
Microelectronics Sciences Laboratory, Columbia University, New York, NY 10027
R. M. Osgood Jr
Affiliation:
Microelectronics Sciences Laboratory, Columbia University, New York, NY 10027
D. V. Podlesnik
Affiliation:
IBM General Technology Division, Hopewell Junction, NY 12533
Get access

Abstract

In this paper, we will present a study of the thermal reaction of AsjOs with GaAs at temperatures below 550°C using monochromatic X-ray photoelectron spectroscopy (MXPS). A solid-state interface reaction of 4GaAs + 3AS2O5 → 2Ga2O3 + 3AS2O3 + 4As, which includes the usual native oxide thermal reaction: 2GaAs + AS2O3 → Ga2O3 + 4As, as well as a decomposition reaction AS2O5 → AS2O3 + O2 is responsible for the thermal reaction in this temperature range.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Akita, K., Taneya, M., Sugimoto, Y., Hidaka, H., and Katayama, Y., J. Vac. Sci. Technol. B7, 1471 (1989);Google Scholar
Taneya, M., Akita, K., Hidaka, H., and Sugimota, Y., Appl. Phys. Lett. 56, 98 (1990).Google Scholar
2. Buuren, T. V., Weilmeier, M. K., Athwal, I., Colbow, K. M., Mackenzei, J. A., Tiedje, T., Wong, P. C. and Mitchell, K. A. R.; Appl. Phys. Lett. 52, 464 (1991);CrossRefGoogle Scholar
Lavoie, C., Tiedje, T., Mackenzie, J., Colbow, K. M., Buuren, T. Van., Pinnington, T., presented at 38th American Vacuum Society National Symposium, Seattle, Washington, 1991 (unpublished).Google Scholar
3. Schwartz, G. P., Schwartz, B., Distefano, D., Gualtieri, G. J., and Griffiths, J. E., Appl. Phys. Lett., 24, 205 (1979).CrossRefGoogle Scholar
4. Schwartz, G. P., Gualiteri, G. J., Kammlott, G. W., and Schwartz, B., J. Electrochem. Soc. 126, 1737 (1979);CrossRefGoogle Scholar
Thurmond, C. D., Schwartz, G. P., Kammlott, G. W., and Schwartz, B., J. Electrochem. Soc. 127, 1366 (1980).CrossRefGoogle Scholar
5. Lu, Z., Schmidt, M. T., Osgood, R. M., Holber, W., Poldlesnik, D. V., J. Vac. Sci. Technol. A9, 1040 (1991).Google Scholar
6. Lu, Z., Schmidt, M. T., Podlesnik, D. V., Yu, C. F. and Osgood, R. M. Jr, Dec. 1990, J. Chem. Phys. 22, 795 (1990).Google Scholar
7. Grant, H. and Monch, W., Surface Sci. B2, 217 (1981).Google Scholar
8. Carlson, T. A. and McGuire, G. E., J. Electron Spectry. 1, 161 (1972/1973).Google Scholar
9. Landgren, G., Ludeke, R., Jugnet, Y., Morar, J. F., and Himpsel, F. J., J. Vac. Sci. Technol. B2, 351 (1984).CrossRefGoogle Scholar
10. Weinreich, O. A., J. Appl. Phys. 22, 2924 (1966);Google Scholar
Chang, R. P. H. and Sinha, A. K., Appl. Phys. Lett. 22, 56 (1976).Google Scholar
11. Ingrey, S., Lau, W. M. and McIntyre, N. S., J. Vac. Sci. Technol. A4, 984 (1986);Google Scholar
Hoffbauer, M., (personal communication).Google Scholar
12. Massies, J. and Contour, J. P., Appl. Phys. Lett. 46, 1150 (1985).Google Scholar
13. AS2O5 decompose to AS2O3 and O2 at 315°C, The Oxide Handbook, edited by Samsonov, G. V., (IFI/Plenum, New York, 1973), p. 215, heat of formation of As-oxide see: p. 95.Google Scholar