Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-12T10:57:17.370Z Has data issue: false hasContentIssue false

A Study of the Tetragonal-To-Orthorhombic Transition of YBa2Cu3Ox by Dilatometry

Published online by Cambridge University Press:  28 February 2011

S. C. Han
Affiliation:
Shanghai Institute of Metallurgy, Academy of Sciences of China Shanghai, China 200050
Z. L. Wu
Affiliation:
Shanghai Institute of Metallurgy, Academy of Sciences of China Shanghai, China 200050
Get access

Abstract

An YBa2Cu3Ox bar specimen was air annealed at 930°C followed by water quenching under protection of a quartz sheath, then annealed at a series of temperatures between 300° -500°C. Isothermal dilatation curves were measured at each annealing temperature. An Avrami type plot of these data gave rise to an activation energy H=1.2eV for the tetragonal-to-orthorhombic reaction. It is suggested that this is the activation enthalpy of oxygen diffusion in the tetragonal phase which remains continuous and therefore rate controlling throughout the whole course of transition. Based upon this transition process, we expect a fully annealed specimen to be composed of numerous superconducting domains separated by a continuous film of semiconducting tetragonal phase, one or two molecular layers thick. At the points of contact, this film is highly strained by the impinging domains, rendering the material superconductive by S/N/S junctions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bednorz, J.G. and Müller, K.A., Z. Phys. B64, 189 (1986).Google Scholar
2. Wu, M.K., Ashburn, J.R., Torng, C.J., Hor, P.H., Meng, R.L., Gao, L., Huang, Z.H., Wang, Y.Q. and Chu, C.W., Phys. Rev. Lett. 58, 908 (1987).Google Scholar
3. Zhao, Z., Chen, L., Cui, C., Huang, Y., Liu, J., Chen, G., Li, S., Guo, S., and He, Y., Kexue Tongbao No.6, 661 (1987).Google Scholar
4. Cava, R.J., Batlogg, B., van Dover, R.B., Murphy, D.W., Sunshine, S., Siegrist, T., Remeika, J.P., Reitman, E.A., Zahurak, S. and Espinosa, G.P., Phys. Rev. Lett. 58, 1676 (1987).Google Scholar
5. Siegrist, T., Sunshine, S., Murphy, D.W., Cava, R.J. and Zahurak, S.M., Phys. Rev. B 35, 7137 (1987).Google Scholar
6. Grant, P.M., Beyers, R.B., Engler, E.M., Lim, G., Parkin, S.S.P., Ramirez, M.L., Lee, V.Y., Nazzal, A., Vazquez, J.E. and Savoy, R.J., Phys. Rev. B35, 7242 (1987).Google Scholar
7. Syono, Y., Kikuchi, M., Oh-ishi, K., Hiraga, K., Arai, H., Matsui, Y., Kobayashi, N., Sasaoka, T. and Muto, Y., Jpn. J. Appl. Phys. 26, L498 (1987).Google Scholar
8. Izumi, F., Asano, H., Ishigaki, T., Ono, A., Okamura, F.P., Jpn. J. Appl. Phys. 26 L611 (1987).Google Scholar
9. Takayama-Muromachi, E., Uchida, Y., Yukino, K., Tanaka, T., Kato, K., Jpn. J. Appl. Phys. 26, L665 (1987).Google Scholar
10. Izumi, F., Asano, H., Ishigaki, T., Takayama-Muromachi, E., Uchida, Y., Watanabe, N. and Nishikawa, T., Jpn. J. Appl. Phys. 26 649 (1987).Google Scholar
11. Jorgensen, J.D., Beno, M.A., Hinks, D.G., Soderholm, L., Volin, K.J., Hitterman, R.L., Grace, J.D., Schuller, I.K., Segre, C.U., Zhang, K., and Kleefisch (unpublished).Google Scholar
12. Yan, Q.W., Zhang, P.L., Jin, L., Shen, Z.G., Zhao, J.K., Ren, Y., Wei, Y.N., Mao, T.D., Liu, C.X., Ning, T.S., Sun, K. and Yang, Q.S. (unpublished).Google Scholar
13. Wells, C., in “Atom Movements”, Am. Soc. for Metals, Cleaveland, (1951).Google Scholar
14. Cahn, J.W., in “The Mechanism of Phase Transformation in Crystalline Solid”, The Inst. of Metals, London (1968).Google Scholar
15. Zhou, B., Qiu, J.W., Tong, Z.M., Miao, B.C. and Qian, Y.J., Intern. J. Modn. Phys. B1, 521 (1987).Google Scholar