Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-26T11:07:55.027Z Has data issue: false hasContentIssue false

A Study of the Effect of V/III Flux Ratio and Substrate Temperature on the in Incorporation Efficiency in inxGa1−x/GaN Heterostructures Grown by Rf Plasma-Assisted Molecular Beam Epitaxy

Published online by Cambridge University Press:  03 September 2012

M. L. O'Steen
Affiliation:
Dept. of Physics, Oklahoma State University, Stillwater, OK 74078, U.S.A.
R. J. Hauenstein
Affiliation:
Dept. of Physics, Oklahoma State University, Stillwater, OK 74078, U.S.A.
Get access

Abstract

Laterally resolved high resolution X-ray diffraction (HRXRD) and photoluminescence spectroscopy (PL) have been used to assess In incorporation efficiency in InxGa1−xN/GaN heterostructures grown through rf-plasma-assisted molecular beam epitaxy. Average alloy composition over a set of InxGa1−xN/GaN superlattices has been found to depend systematically upon both substrate temperature (Tsub) and V/III flux ratio during growth. A pronounced thermally activated In loss (with more than an order-of-magnitude decrease in average alloy composition) is observed over a narrow temperature range (590–670oC), with V/III flux ratio fixed. Additionally, the V/III flux ratio is observed to further strongly affect In incorporation efficiency for samples grown at high Tsub, with up to an order-of-magnitude enhancement in In content despite only a minor increase in V/III flux ratio. PL spectra reveal redshifts as In content is increased and luminescence efficiency which degrades rapidly with decreasing Tsub. Results are consistent with In loss arising from thermally activated surface segregation + surface desorption processes during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Böttcher, T., Einfeldt, S., Kirchner, V., Figge, S., Heinke, H., Hommel, D., Selke, H., and Ryder, P. L., Appl. Phys. Lett. 73, 3232 (1998).Google Scholar
2. Doppalapudi, D., Basu, S. N., Ludwig, K. F. Jr. and Moustakas, T. D., J. Appl. Phys. 84, 1389 (1998).Google Scholar
3. Singh, R., Doppalapudi, D., Moustakas, T. D., and Romano, L. T., Appl. Phys. Lett. 70, 1089 (1997).Google Scholar
4. Yang, B., Brandt, O., Jenichen, B., Müllhäuser, J., and Ploog, K. H., J. Appl. Phys. 82, 1918 (1997).Google Scholar
5. Ho, I.-H. and Stringfellow, G. B., Appl. Phys. Lett. 69, 2701 (1996), and references therein.Google Scholar
6. Müllhäuser, J. R., Brandt, O., Trampert, A., Jenichen, B., and Ploog, K. H., Appl. Phys. Lett. 73, 1230 (1998).Google Scholar
7. Widmann, F., Daudin, B., Feuillet, G., Pelekanos, N., and Rouvière, J. L., Appl. Phys. Lett. 73, 2642 (1998).Google Scholar
8. Chen, H., Smith, A. R., Feenstra, R. M., Greve, D. W., and Northrup, J. E., MRS Internet J. Nitride Semicond. Res. S1, G9.5 (1999).Google Scholar
9. O'Steen, M. L., Fedler, F., and Hauenstein, R. J., Appl. Phys. Lett. 75, 2820 (1999).Google Scholar
10. Hauenstein, R. J., Collins, D. A., Cai, X. P., O'Steen, M. L., and McGill, T. C., Appl. Phys. Lett. 66, 2861 (1996).Google Scholar
11. Bandic, Z. Z., Hauenstein, R. J., O'Steen, M. L., and McGill, T. C., Appl. Phys. Lett. 68, 1510 (1996).Google Scholar
12. McCluskey, M. D., Walle, C. G. Van de, Master, C. P., Romano, L. T., and Johnson, N. M., Appl. Phys. Lett. 72, 2725 (1998).Google Scholar