Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T02:19:32.605Z Has data issue: false hasContentIssue false

A Study of the Defect Structure in GaAS1−xPx/GaAs AS x<0.25

Published online by Cambridge University Press:  15 February 2011

G. Aragon
Affiliation:
Departamento de Ciencia de los materiales e Ingeniería Metalúrgica y Química Inorgánica. Universidad de Cádiz. Apdo 40, Puerto Real, 11510-Cádiz., Spain.
M.J. De Castro
Affiliation:
Departamento de Ciencia de los materiales e Ingeniería Metalúrgica y Química Inorgánica. Universidad de Cádiz. Apdo 40, Puerto Real, 11510-Cádiz., Spain.
S.I. Molina
Affiliation:
Departamento de Ciencia de los materiales e Ingeniería Metalúrgica y Química Inorgánica. Universidad de Cádiz. Apdo 40, Puerto Real, 11510-Cádiz., Spain.
Y. Gonzalez
Affiliation:
Centro Nacional de Microelectrónica. Serrano 144, 28006-Madrid., Spain.
L. Gonzalez
Affiliation:
Centro Nacional de Microelectrónica. Serrano 144, 28006-Madrid., Spain.
F. Briones
Affiliation:
Centro Nacional de Microelectrónica. Serrano 144, 28006-Madrid., Spain.
R. Garcia
Affiliation:
Departamento de Ciencia de los materiales e Ingeniería Metalúrgica y Química Inorgánica. Universidad de Cádiz. Apdo 40, Puerto Real, 11510-Cádiz., Spain.
Get access

Abstract

The defect structure of GaAsP layer grown by Atomic Layer Molecular Beam Epitaxy on (001) GaAs substrate has been studied by Transmission Electron Microscopy. The phosphorous content and the epilayer thickness have been changed below 25% and 1μm respectively. Three kinds of defect structure have been found: a) α-δ fringes at the interface for coherent epilayer, b) Misfit dislocation for thin epilayers and c) Multiple cracks normal to the interface and parallel to one <110> direction for thick epilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Olsen, G.H., Abrahams, M.S. and Zamerowski, T.J., J. Electrochem. Soc. 121, 1650 (1974)Google Scholar
[2] Abrahams, M.S., Blanc, J. and Buiocchi, C.J., Appl. Phys. Lett. 21, 185 (1972)Google Scholar
[3] Biefeld, R.M.. Hills, C.R. and Lee, S.R., J.Crys. Growth 91, 515 (1988)Google Scholar
[4] Briones, F., González, L. and Ruiz, A., Appl. Phys. A 49, 729 (1989)CrossRefGoogle Scholar
[5] Dunstan, D.J., Young, S. and Dixon, R.H., J. Appl. Phys. 70, 3038 (1991)Google Scholar
[6] Lefebvre, A., Herbeaux, C., Bouillet, C. and Di Persio, J., J. Cryst. Growth 108, 655 (1991)CrossRefGoogle Scholar
[7] Androussi, Y. and Lefebvre, A., Phys. Stat. Sol. (a) 129, 467 (1992)CrossRefGoogle Scholar
[8] Bangert, U. and Charsley, P., Phil. Mag. A 59, 629 (1989)Google Scholar
[9] Fox, B.A. and Jesser, W.A., J. Appl. Phys. 68, 2760 (1990)Google Scholar
[10] Kavanagh, K.L., Capano, M.A., Hobbs, L.W., Barbour, J.C., Marée, P.M.J., Schaff, W., Mayer, J.W., Pettit, D., Woodall, J.M., Stroscio, J.A. and Feenstra, R.M., J. Appl. Phys. 64, 4843 (1988)Google Scholar