Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T08:18:05.798Z Has data issue: false hasContentIssue false

A Study of Indium Nitride Films Grown Under Conditions Resulting in Apparent Band-gaps from 0.7 eV to 2.3 eV

Published online by Cambridge University Press:  11 February 2011

K. S. A. Butcher
Affiliation:
Physics Department, Macquarie University, Sydney, NSW 2109, Australia.
M. Wintrebert-Fouquet
Affiliation:
Physics Department, Macquarie University, Sydney, NSW 2109, Australia.
Motlan
Affiliation:
Department of Physics, Faculty of Mathematics and Science, State University of Medan, Indonesia.
S. K. Shrestha
Affiliation:
School of Physics, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600, Australia.
H. Timmers
Affiliation:
School of Physics, University of New South Wales at the Australian Defence Force Academy, Canberra, ACT 2600, Australia. Department of Nuclear Physics, Research School of Physical Sciences and Engineering, Australian, National University, Canberra, ACT 0200, Australia.
K. E. Prince
Affiliation:
Australian Nuclear Science and Technology Organisation, Private Mail Bag 1, Menai NSW 2234, Australia.
T. L. Tansley
Affiliation:
Physics Department, Macquarie University, Sydney, NSW 2109, Australia.
Get access

Abstract

The band-gap of indium nitride has long been believed to be about 1.9eV with slight variations due to band-tailing in polycrystalline samples and degenerate doping. Recently, other values as low as 0.7 eV have apparently been observed. We have compared samples spanning this apparent range of band-gap using secondary ion mass spectroscopy (SIMS), X-ray Photoelectron Spectroscopy (XPS) and heavy ion elastic recoil detection analysis (ERDA), in conjunction with spectral optical density measurements. Once structural inhomogeneiteies are taken into account, we show that much of the conflicting data are compatible with direct photoionisation with a threshold energy of about 1.0eV. This feature was first reported in polycrystalline indium nitride over 15 years ago and attributed to a ∣p> like defect state. We ask whether the feature may instead be a direct band-gap.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Tansley, T. L. and Foley, C. P., Electron Lett. 20, 1066 (1984).Google Scholar
2. Tansley, T. L. and Foley, C. P., J. Appl. Phys. 59, 3241 (1986).Google Scholar
3. Wu, J., Walukiewicz, W., Yu, K.M., Ager, J.W. III, Haller, E.E., Lu, H., Schaff, W.J., Saito, Y. and Nanishi, Y., Appl. Phys. Lett. 80, 3967 (2002).Google Scholar
4. Yu Davydov, V., Klochikhin, A. A., Emtsev, V. V., Ivanov, S. V., Vekshin, V. V., Bechstedt, F., Furthmuller, J., Harima, H., Mudryi, A. V., Hashimoto, A., Yamamoto, A., Aderhold, J., Graul, J. and Haller, E. E., Phys. Stat. Sol. B, 230, R4 (2002).Google Scholar
5. Inushima, T., Mamutin, V. V., Vekshin, V. A., Ivanov, S. V., Sakon, T., Motokawa, M. and Ohoya, S., J. Crystal Growth, 227–228, 481 (2001).Google Scholar
6. Private communication with W. J. Schaff of Cornell University.Google Scholar
7. Lu, H., Schaff, W. J., Hwang, J., Wu, H., Yeo, Wesley, Pharkya, A. and Eastman, L. F., Appl. Phys. Lett., 77, 2548 (2000).Google Scholar
8. Yu Davydov, V. work presented, International Workshop on Nitride Semiconductors, Aachen Germany July 2002.Google Scholar
9. Butcher, K. S. A., Timmers, H., Afifuddin, , Chen, P. P.-T., Weijers, T. D. M., Goldys, E. M., Tansley, T. L., Elliman, R. G. and Freitas, J. A. Jr, J. Appl. Phys. 92, 3397 (2002).Google Scholar
10. Butcher, K. S. A., Dou, H., Goldys, E. M., Tansley, T. L. and Srikeaw, S., Accepted for publication Phys. Stat. Sol. B. Google Scholar
11. Butcher, K. S. A., Wintrebert-Fouquet, M., Chen, P. P.-T., Tansley, T. L., Srikeaw, S., Shrestha, S. K., Elliman, R.G., and Timmers, Heiko, Accepted for publication in the Australian Institute of Physics 2002 Biennial Congress Proceedings. Also detailed in a recent submission to Appl. Phys. Lett. Google Scholar
12. Gao, Y., Surf. Interface Anal., 14, 552 (1989).Google Scholar
13. Kumar, S., Mo, L., Motlan, and Tansley, T. L., Jpn J. Appl. Phys., 35, 2261 (1996).Google Scholar
14. Mamutin, V. V., Shubina, T. V., Vekshin, V. A., Ratnikov, V. V., Toropov, A. A., Ivanov, S. V., Karlsteen, M., Sodervall, U. and Willander, M., Appl. Surf. Sci., 166, 87 (2000).Google Scholar
15. Timmers, H., Weijers, T. D. M., Elliman, R. G., Nucl. Instr. Meth. B, 190, 393 (2002).Google Scholar
16. Sze, S. M., Physics of Semiconductor Devices, second edition, (John Wiley, New York, 1981) pp. 3941.Google Scholar
17. Tansley, T. L., Egan, R. J. and Horrigan, E. C., Thin Solid Films, 164, 441 (1988).Google Scholar
18. Wu, J., Walukiewicz, W., Yu, K. M., Ager, J. W. III, Haller, E. E., Lu, H. and Schaff, W. J., Appl. Phys. Lett., 80, 4741 (2002).Google Scholar
19. Tansley, T. L. and Foley, C. P., J. Appl. Phys., 60, 2092 (1986).Google Scholar