Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-12T05:23:01.347Z Has data issue: false hasContentIssue false

A Study of Impacting Droplets of an Emulsion or Surfactant Solution on Solid Substrates

Published online by Cambridge University Press:  10 February 2011

M. Vignes-Adler
Affiliation:
Laboratoire des Phénomènes de Transport dans les Mélanges du CNRS, SP2MI, F-86960 Futuroscope Cedex, France, [email protected]
B. Prunet-Foch
Affiliation:
Laboratoire des Phénomènes de Transport dans les Mélanges du CNRS, SP2MI, F-86960 Futuroscope Cedex, France, [email protected]
F. Legay
Affiliation:
Laboratoire des Phénomènes de Transport dans les Mélanges du CNRS, SP2MI, F-86960 Futuroscope Cedex, France, [email protected]
N. Mourougou
Affiliation:
Laboratoire des Phénomènes de Transport dans les Mélanges du CNRS, SP2MI, F-86960 Futuroscope Cedex, France, [email protected]
Get access

Abstract

Coating of solid surfaces with uniform, thin liquid films occurs in many industrial processes. A common process consists of spraying some liquids or emulsions on a freshly created solid surface. In this context, we have investigated the impact of a single droplet of various emulsions and surface-active solutions on a solid substrate using a high frequency fluorescent visualization technique (1 picture every 0.25 ms). Whatever the materials in presence, the drop spreads and then retracts under the action of inertia and capillarity respectively. Inertia induces spreading and generates a peripheral rim which is unstable to fingering. Then contact line instabilities appear under the form of festoons with pure liquids which are damped with surface-active solutions and amplified with emulsions. When the adsorption kinetics of the surfactant is slow, the equilibrium surface tension is not restored during the duration of the experiment and the drop can bounce back.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Worthington, A.M., Proc. R. Soc. Lond. A 25, 261, (1876).Google Scholar
2. Rein, M., Fluid Dyn. Res. 12, 61, (1993).Google Scholar
3. Savicand, P. Boult, G.T., Nat. Res. Council of Canada, Rep. No Mt-26, (1955).Google Scholar
4. Yarinand, A.L. Weiss, D.A., J. Fluid Mech. 283, 141, (1995).Google Scholar
5. Harlowand, F.H. Shannon, J.P., J. Appl. Phys. 38 (10), 3855, (1967).Google Scholar
6. Fukai, J., Zhao, Z., Poulikakos, D., Megaridis, C. M., Miyatake, O., Phys. Fluids A 5 (11), 2588, (1993).Google Scholar
7. Fukai, J., Shliba, Y., Yamamoto, T., Miyatake, O., Poulikakos, D., Megaridis, C. M., Zhao, Z., Phys. Fluids 7 (2), 236, (1995).Google Scholar
8. Levin, Z. and Hobbs, P. V., Phil. Trans. R. Soc. Lond. 269, A1200, 555, (1971).Google Scholar
9. Stow, C.D. and Hadfield, M.G., Proc. R. Soc. Lond. A373, 419, (1981).Google Scholar
10. Chandra, S. and Avedisian, C.T., Proc‥ Soc. Lond. A432, 13, (1991).Google Scholar
11. Cazabat, A.M., Contemp. Phys. 28(4), 347, (1987).Google Scholar
12. Troian, S., Herbolzheimer, E., Safran, S. A. and Joanny, J. F., Europhys. Lett. 10(1), 25, (1989).Google Scholar
13. Huppert, H. E., Nature 300, 427, (1982).Google Scholar
14. Seriven, L.E. and Sternling, C.V, Nature, 167, 186, (1960).Google Scholar