Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-26T03:29:20.091Z Has data issue: false hasContentIssue false

Studies on Phosphorus-Implantation and the Annealing of Cadmium Telluride and Copper Indium Disulfide

Published online by Cambridge University Press:  21 February 2011

Y. J. Hsu
Affiliation:
Dept. of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
H. L. Hwang
Affiliation:
Dept. of Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan 30043, Republic of China
H. Y. Ueng
Affiliation:
Dept. of Electrical Engineering, National Sun Yat-Sen University, Kaohsiung, Taiwan 80424, Republic of China
Get access

Abstract

The doping efficiencies obtained in phosphorus-implanted cadmium telluride and copper indium disulfide annealed by pulse electron beam were higher than those annealed by conventional thermal method. To get insights into this phenomenon, electron paramagnetic resonance measurements were performed for both crystals at various stages during the doping process. The results indicated that the pulse electron beam annealing could effectively eliminate the phosphorus interstitials in the implanted crystals but the thermal annealing could not. This shows the significant effect of melting crystals by pulse electron beam annealing to obtain high doping efficiencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ueng, H. Y. and Hwang, H. L., Solid State Phenomena 1&2, 343 (1988).Google Scholar
2. Yang, C. B., Peng, M. L., Lue, J. T. and Hwang, H. L., IEEE Trans. Electron Devices ED-32, 2293 (1985).Google Scholar
3. Lin, J. L., Liu, L. M., Lue, J. T., Yang, M. H., and Hwang, H. L., J. Appl. Phys. 59, 378 (1986).Google Scholar
4. Hsu, H. J., Yang, M. H., Tang, R. S., Hsu, T. M., and Hwang, H. L., J. Crystal Growth 70,183 (1984).Google Scholar
5. Sun, C. Y., Hwang, H. L., Leu, C. Y., Liu, L. M., and Tseng, B. H., Jpn. J. Appl. Phys. 12, 81 (1980).Google Scholar
6. Goltzene, A. and Schwab, C., Rev. Phys. Appl., 12,199(1977).Google Scholar
7. Saminadayar, K., Galland, D. and Molva, E., Solid State Commun. 49, 627 (1984).Google Scholar
8. Bilbe, R. M., Nicholls, J. E. and Davies, J. J., Phys. Stat. Sol. (b) 121, 339 (1984).Google Scholar
9. Kroger, F. A., Rev. Phys. Appl. 12, 205 (1977).Google Scholar
10. Hwang, H. L., Liu, L. M., Yang, M. H., Chen, J. S., Chen, J. R., and Sun, C. Y., Solar Energy Materials,7 325 (1982).Google Scholar
11. Geschwind, S., Phys. Rev. 121, 363 (1961).Google Scholar
12. Tchapkui-Niat, J. M., Goltzene, A., and Schwab, C., J. Phys. C 15, 4671 (1982).Google Scholar
13. Hsu, Y. J., Hwang, H. L. and Sun, C. Y., J. Crystal Growth,86 749 (1988).Google Scholar