Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T15:46:50.384Z Has data issue: false hasContentIssue false

Structure of the Al2Cu(001) and Al9Co2(001) surfaces: role of the covalent-like bonding network and off-stoichiometric effects

Published online by Cambridge University Press:  25 February 2013

Émilie Gaudry
Affiliation:
Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
Sebastián Alarcón Villaseca
Affiliation:
Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
Julian Ledieu
Affiliation:
Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
Jean-Marie Dubois
Affiliation:
Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
Vincent Fournée
Affiliation:
Institut Jean Lamour, UMR 7198 CNRS-Université de Lorraine, Parc de Saurupt, 54011 Nancy, France
Get access

Abstract

The Al2Cu and Al9Co2 intermetallic compounds share structural similarities: they are bothdescribed in terms of coordination polyedra with a tetragonal symmetry and covalent-like bonding occur in both compounds. In this paper, the (001) surface structure of Al2Cu and Al9Co2 is described based on a combined scanning tunneling microscopy (STM), low-energy electron diffraction (LEED), X-ray and ultraviolet photoemission spectroscopy (XPS and UPS) and density functional theory (DFT) study. Surface models are elaborated from stoichiometric ideal compounds, leading to a pure aluminium plane as the surface termination in both cases. The nature of the constitutional defect in Al9Co2 is determined using density functional theory calculations. The influence of the surface atomic density, of the surface composition and of off-stoichiometric effects on the (001) surface structures of Al2Cu and Al9Co2 are discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Grin, Y., Burkhardt, U., Ellner, M. and Peters, K., J. Alloys Comp., 206, 243 (1994).10.1016/0925-8388(94)90043-4CrossRefGoogle Scholar
Burkhardt, U., Ellner, M. and Grin, J., Powder Diffraction, 11, 123 (1996).10.1017/S0885715600009106CrossRefGoogle Scholar
Ormeci, A., Grin, Y., Israel J. Chem., 51, 1349 (2011).10.1002/ijch.201100147CrossRefGoogle Scholar
Bostrom, M., Rosner, H., Prots, Y., Burkhardt, U. and Grin, Y., Z. Anorg. Allg. Chem., 631, 534 (2005).10.1002/zaac.200400418CrossRefGoogle Scholar
Grin, Y., Wagner, F.R., Armbrüster, M., Kohout, M., Leithe-Jasper, A., Schwartz, U., Wedig, U. and von Schnering, H.G., J. Solid State Chem., 179, 1707 (2006).10.1016/j.jssc.2006.03.006CrossRefGoogle Scholar
Cohen-Adad, M.T., Laversenne, L., Gharbi, M., Goutaudier, C., Boulon, G. and Cohen-Adad, R., Journal of Phase Equilibria, 22, 379 (2001).10.1361/105497101770332929CrossRefGoogle Scholar
Belin-Ferré, E., Dubois, J.-M., Int. J. Mat. Res., 97, 7 (2006).10.3139/146.101329CrossRefGoogle Scholar
Lukatela, J., Stanic, D., Popcevic, P., Ivkov, J., Dolinsek, J. and Gille, P., Croat. Chem. Acta, 83, 27(2010).Google Scholar
Serway, R., “Principles of Physics”, (2nd ed ed.). Fort Worth, Texas; London: Saunders College Pub.p. 602 (1998).Google Scholar
Trambly de Laissardière, G., Nguyen Manh, D. and Mayou, D., Progress in Materials Science, 50, 679 (2005).10.1016/j.pmatsci.2005.01.001CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Phys. Rev. B, 54, 11169 (1996).10.1103/PhysRevB.54.11169CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J., Comp. Mat. Science, 6, 15 (1996).10.1016/0927-0256(96)00008-0CrossRefGoogle Scholar
Blöchl, P. E., Phys. Rev. B, 50, 17953 (1994).10.1103/PhysRevB.50.17953CrossRefGoogle Scholar
Kresse, G. and Joubert, D., Phys. Rev. B, 59, 1758 (1999).10.1103/PhysRevB.59.1758CrossRefGoogle Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett., 77, 3865 (1996).10.1103/PhysRevLett.77.3865CrossRefGoogle Scholar
Perdew, J.P., Burke, K. and Ernzerhof, M., Phys. Rev. Lett., 78, 1396 (1997).10.1103/PhysRevLett.78.1396CrossRefGoogle Scholar
Alarcón Villaseca, S., Ledieu, J., Serkovic-Loli, L., De Weerd, M.-C., Gille, P., Fournée, V., Dubois, J.-M. and Gaudry, É., J. Phys. Chem. C, 115, 14922 (2011).10.1021/jp203727hCrossRefGoogle Scholar
Serkovic-Loli, L. N., Gaudry, É., Fournée, V., De Weerd, M.-C. and Ledieu, J., Phys. Rev. Lett., 108, 146101 (2012).10.1103/PhysRevLett.108.146101CrossRefGoogle Scholar
Schubert, K., “Kristallstukturen zweuikomponentiger Phasen”, Springer, Berlin, Göttingen, Heidelberg, 1964.10.1007/978-3-642-94904-3CrossRefGoogle Scholar
Nowotny, H., Schubert, K., Z. Metallkd., 37, 17 (1946).Google Scholar
Ruban, A.V., Phys. Rev. B, 65, 174201 (2002).10.1103/PhysRevB.65.174201CrossRefGoogle Scholar
Hagen, M. and Finnis, M., Phil. Mag A, 77, 447 (1998).10.1080/01418619808223764CrossRefGoogle Scholar
Galanakis, I., Bihlmayer, G., Bellini, V., Papanikolaou, N., Zeller, R., Blügel, S. and Dederichs, P. H., Europhys. Lett., 58, 751 (2002).10.1209/epl/i2002-00413-7CrossRefGoogle Scholar
Unal, B., Jenks, C.J. and Thiel, P.A., Phys. Rev. B, 77, 195419 (2008).10.1103/PhysRevB.77.195419CrossRefGoogle Scholar
Gaudry, É., Shukla, A. K., Duguet, T., Ledieu, J., De Weerd, M.-C., Dubois, J.-M. and Fournée, V., Phys. Rev. B, 82, 085411 (2010).10.1103/PhysRevB.82.085411CrossRefGoogle Scholar
Deniozou, Th., Addou, R., Shukla, A. K., Heggen, M., Feuerbacher, M., Krajcí, M., Hafner, J., Widmer, R., Gröning, O., Fournée, V., Dubois, J.-M. and Ledieu, J., Phys. Rev. B, 81, 125418 (2010).10.1103/PhysRevB.81.125418CrossRefGoogle Scholar
De Boer, F.R., Boom, R., Mattens, W.C.M., Miedema, A.R. and Niessen, A.K., “Cohesion in metals”,Elsevier, Amsterdam (1988).Google Scholar
Blum, V., Hammer, L., Schmidt, Ch., Wieckhorst, O., Müller, S. and Heinz, K., Phys. Rev. Lett., 89, 266102 (2002).10.1103/PhysRevLett.89.266102CrossRefGoogle Scholar
Massalski, T. B., Okamoto, H., “Binary alloy phase diagram”, Asm Int (1996).Google Scholar
Zogg, H., J. Appl. Cryst., 12, 91 (1979).10.1107/S0021889879011833CrossRefGoogle Scholar
Grin, Y., Wagner, F.R., Armbrüster, M., Kohout, M., Leithe-Jasper, A., Schwartz, U., Weding, U., Von Schnering, H.G., J. Solid State Chem., 179, 1707 (2006).10.1016/j.jssc.2006.03.006CrossRefGoogle Scholar
Haarmann, F., Armbrüster, M. and Grin, Y., Chem. Mater., 19, 1147 (2007).10.1021/cm062313kCrossRefGoogle Scholar
Meschel, S.V., and Kleppa, O.J., J. Alloys Comp., 321, 183 (2001).10.1016/S0925-8388(01)00966-5CrossRefGoogle Scholar