Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-27T03:15:31.374Z Has data issue: false hasContentIssue false

Structure, Mechanical Properties, and Thermal Transport in Microporous Silicon Nitride Via Parallel Molecular Dynamics

Published online by Cambridge University Press:  10 February 2011

Andrey Omeltchenko
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Computer Science Department of Physics and Astronomy Louisiana State University, Baton Rouge, LA [email protected] [email protected] [email protected] [email protected] http://www.cclms.lsu.edu/cclms/
Aiichiro Nakano
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Computer Science Department of Physics and Astronomy Louisiana State University, Baton Rouge, LA [email protected] [email protected] [email protected] [email protected] http://www.cclms.lsu.edu/cclms/
Rajiv K. Kalia
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Computer Science Department of Physics and Astronomy Louisiana State University, Baton Rouge, LA [email protected] [email protected] [email protected] [email protected] http://www.cclms.lsu.edu/cclms/
Priya Vashishta
Affiliation:
Concurrent Computing Laboratory for Materials Simulations Department of Computer Science Department of Physics and Astronomy Louisiana State University, Baton Rouge, LA [email protected] [email protected] [email protected] [email protected] http://www.cclms.lsu.edu/cclms/
Get access

Abstract

Molecular dynamics simulations are performed to investigate structure, mechanical properties, and thermal transport in amorphous silicon nitride under uniform dilation. As the density is lowered, we observe the formation of pores below ρ = 2.6 g/cc and at 2.0 g/cc the largest pore percolates through the entire system. Effects of porosity on elastic constants, phonons and thermal conductivity are investigated. Thermal conductivity and Young's modulus are found to scale as ρ1.5 and ρ3.6, respectively.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Silicon Nitride by Shaffer, P. T. B. and Goel, A. (Advanced Refractory Technologies Inc, Buffalo, NY, 1993); S. V. Ghaisas and A. Madhukar, Phys. Rev. Lett. 56, 1066 (1986); S. V. Ghaisas and A. Madhukar, App. Phys. Lett. 53, 1599 (1988).Google Scholar
2. Preparation and Properties of Solid State Materials, ed. W. R. Wilcox, (Marcel Dekker Inc, New York and Basel); Marians, C. S. and Hobbs, L. W., J. Non-Cryst. Solids 106, 309 (1988); C. S. Marians and L. W. Hobbs, J. Non-Cryst. Solids 106, 317 (1988).Google Scholar
3. Misawa, M. et al., J. Non-Cryst Solids 34, 313 (1979); T. Aiyama et al., J. Non-Cryst Solids 33, 131 (1979).Google Scholar
4. Nilsson, O., Fransson, Å., and Sandberg, O., Aerogels, Springer Proceedings of Physics 6, ed. Fricke, J. (Springer, Heidelberg, 1986), p. 121; J. Fricke et al., Int. J. of Heat and Mass Transfer 35, 2305 (1992).Google Scholar
5. Lu, X. et al., J. Appl. Phys. 73, 581 (1993).Google Scholar
6. Gross, J. and Fricke, J., J. Non-Cryst. Solids 145, 217 (1992); J. Gross et al., Phys. Rev. B 45, 12776 (1992).Google Scholar
7. Havlin, S. and Bunde, A., in Fractals and Disordered Systems, eds. Bunde, A. and Havlin, S. (Springer-Verlag, Berlin, 1991), p. 97.Google Scholar
8. Vashishta, P., Kalia, R. K., and Ebbsjö, I., Phys. Rev. Lett. 75, 858 (1995); C.-K. Loong, P. Vashishta, R. K. Kalia, and I. Ebbsjö, Europhys. Lett. 31, 201 (1995); details of the interatomic potentials are given in a forthcoming paper by P. Vashishta, R. K. Kalia, and I. Ebbsjö.Google Scholar
9. Allen, M. P. and Tildesley, D. J., Computer Simulation of Liquids, (Oxford University Press, Oxford, 1990).Google Scholar
10 Evans, D. J., Phys Lett 91A, 457 (1982); M. J. Gillan and M. Dixon, J. Phys. C16, 869 (1983).Google Scholar
11. Introduction to Percolation Theory by Stauffer, D. (Taylor & Francis, London, 1985); F. Family and R. Pandey, J. Phys. A 25, L745 (1992); M. Plischke and Z. Ricz, Phys. Rev. Lett. 53, 415 (1984).Google Scholar
12. In the effective medium theory for bond percolation, the generalized conductivity is essentially described by the same power law, see Kirkpatrick, S., Rev. Mod. Phys. 45, 574 (1973).Google Scholar
13. Numerical Recipes, Press, W. H., Flannery, B. P., Teukolsky, S. A., Vetterling, W. T., (Cambridge University Press, 1989).Google Scholar
14. Mukaseev, A. A. et al., Poroshk. Metall. 12, 97 (1972); L. Cartz and J. D. Jorgensen, J. Appl. Phys. 52, 236 (1981).Google Scholar