Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-24T18:32:52.023Z Has data issue: false hasContentIssue false

Structure Characterization and Electrochemical Characteristics of Carbon Nanotube- Spinel Li4Ti5O12 Nanoparticles

Published online by Cambridge University Press:  09 August 2012

Xiangcheng Sun
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
A. Iqbal
Affiliation:
Institute of Chemical Sciences, University of Peshawar, Pakistan
I. D. Hosein
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, Canada
M. J. Yacaman
Affiliation:
Department of Physics and Astronomy, University of Texas at San Antonio, San Antonio, USA
Z. Y. Tang
Affiliation:
National Center for Nanoscience and Technology, Beijing, China
P. V. Radovanovic
Affiliation:
Department of Chemistry, University of Waterloo, Waterloo, Canada
B. Cui
Affiliation:
Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Canada
Get access

Abstract

Carbon nanotube-spinel lithium titanate (CNT-Li4Ti5O12) nanoparticles have been synthesized by hydrothermal reaction and higher-temperature calcinations with LiOH·H2O and TiO2 precursors in the presence of carbon nanotubes sources. The CNT-Li4Ti5O12 nanoparticles have been characterized by X-ray diffraction (XRD), high angle annular dark field (HAADF) images, and selected area electron diffraction (SAED). The particles exhibited a spinel cubic crystal phase and homogenous size distribution, with sizes around 50-70 nm. HAADF imaging confirmed that carbon content exists on the surface of the CNT-Li4Ti5O12 nanoparticles with graphitic carbon coating of 3-5 nm thickness under 800oC in the Ar gas. The graphitic carbon phase was further confirmed with Raman spectroscopy analysis on powder samples. Electrochemical characteristics were evaluated with galvanostatic discharge/charge tests, which showed that the initial discharge capacity is 172 mA·h/g at 0.1C. The nanoscale carbon layers uniformly coated the particles, and the interconnected carbon nanotube network is responsible for the improved charge rate capability and conductivity.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ohzuku, T., Ueda, A., and Yamamoto, N., J. Electrochem. Soc. 142, 1431 (1995)Google Scholar
2. Zaghib, K., Armand, M., and Gauthier, M., J. Electrochem. Soc. 145, 3135 (1998)Google Scholar
3. Nakahara, K., Nakajima, R., Matsushima, T., Majima, H., J. Power Sources, 117, 131 (2003)Google Scholar
4. Zaghib, K., Simoneau, M., and Armand, M., J. Power Sources, 8182, 300 (1999)Google Scholar
5. Chen, C. H., Vaughey, J. T., Jansen, A. N., Dees, D. W., Kahaian, A. J., Goacher, T., and Thackeray, M. M., J. Electrochem. Soc. 148, A102 (2001)Google Scholar
6. Cheng, L., Liu, H. J., Zhang, J. J., Xiong, H. M. and Xia, Y. Y., J. Electrochem. Soc. 153, A1472 (2006)Google Scholar
7. Jiang, C. H., Ichihara, M., Honma, I., and Zhou, H. S., Electrochim. Acta, 52, 6470 (2007)Google Scholar
8. Li, J. R., Tang, Z. L., and Zhang, Z. T., Electrochem. Commun. 7, 894 (2005)Google Scholar
9. Huang, S., Woodson, M., Smalley, R., and Liu, J., Nano Lett. 4, 1025 (2004)Google Scholar
10. Liu, H., Feng, Y., Wang, K., and Xie, J., J. Phys. Chem. Solids, 69, 2037 (2008)Google Scholar
11. Wang, Y., Liu, H., Wang, K., Eiji, H., Wang, Y. and Zhou, H., J. Mater. Chem. 19, 6789 (2009)Google Scholar
12. Al-Muhtaseb, S. A., and Ritter, J. A., Adv. Mater. 15, 101(2003)Google Scholar
13. Lu, H. W., Zeng, W., Li, Y. S., and Fu, Z. W., J. Power Sources, 164, 874 (2007)Google Scholar
14. Kim, J. Y., and Cho, J. P., Electrochem. Solid-State Lett. 10, A81(2007)Google Scholar
15. Prakash, A. S., Manikandan, P., Ramesha, K., Sathiya, M., Tarascon, J. M., and Shukla, A. K., Chem. Mater. 22, 2857(2010)Google Scholar
16. Sorensen, E. M., Barry, S. J., Jung, H. K., Rondinelli, J. R., Vaughey, J. T. and Poeppelmeier, K. R., Chem. Mater. 18, 482 (2006)Google Scholar
17. Zhu, G.N., Liu, H.J., Zhuang, J. H., Wang, C.X., Wang, Y.G., and Xia, Y.Y., Energy Environ. Sci. 4, 4016 (2011)Google Scholar
18. Cheng, L., Yan, J., Zhu, G. N., Luo, J. Y., Wang, C. X., and Xia, Y. Y., J. Mater. Chem. 20, 595(2010)Google Scholar
19. Gao, J., Ying, J. R., Jiang, C. Y., and Wan, C. R., J. Power Sources, 166, 255 (2007)Google Scholar
20. Huang, J. J. and Jiang, Z. Y., Electrochim. Acta, 53, 7756 (2008)Google Scholar
21. Park, K.S., Benayad, A., Kang, D.J., and Doo, S.G., J. Am. Chem. Soc. 130, 14930 (2008)Google Scholar
22. Kim, H. K., Bak, S. M., and Kim, K. B., Electrochem. Communication 12, 1768 (2010)Google Scholar
23. Li, B. H., Ning, F., He, Y. B., Du, H. D., Yang, Q.H., Ma, J., Kang, F.Y., and Hsu, C.T., Int. J. Electrochem. Sci., 6, 3210 (2011)Google Scholar
24. Amine, K., Belharouak, I., Chen, Z. H., Tran, T., Yumoto, H., Ota, N., Myung, S. T. and Sun, Y. K., Adv. Mater. 22, 3052 (2010)Google Scholar
25. Li, X., Qu, M. Z., Huai, Y.J., and Yua, Z.L., Electrochimica Acta, 55, 2978 (2010)Google Scholar
26. Cheng, L., Yan, J., Zhu, G. N., Luo, J.Y., Wang, C. X., and Xia, Y.Y., J. Mater. Chem. 20, 595 (2010)Google Scholar